

Cloud Computing

.

Christian Baun l Marcel Kunze l Jens Nimis
Stefan Tai

Cloud Computing

Web-Based Dynamic IT Services

Christian Baun
Dr. Marcel Kunze
Karlsruhe Institute of Technology (KIT)
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen
Germany
Christian.Baun@kit.edu
Marcel.Kunze@kit.edu

Stefan Tai
Karlsruhe Institute of Technology (KIT)
& FZI Forschungszentrum Informatik
Englerstraße 11
76131 Karlsruhe
Germany
stefan.tai@kit.edu

Jens Nimis
Hochschule Karlsruhe -
Technik und Wirtschaft
Fakultät für Wirtschaftswissenschaften
Moltkestraße 30
76133 Karlsruhe
Germany
jens.nimis@hs-karlsruhe.de

This is an English language translation of the German language edition:
Cloud Computing (2nd edn.) by C. Baun, M. Kunze, J. Nimis, and S. Tai
Published in the book series: Informatik im Fokus
Copyright # Springer-Verlag Berlin Heidelberg 2011
Springer-Verlag is part of Springer Science+Business Media.
All Rights Reserved.

ACM Codes : C.2, D.2, D.4, H.3

ISBN 978-3-642-20916-1 e-ISBN 978-3-642-20917-8
DOI 10.1007/978-3-642-20917-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011931673

Springer-Verlag Berlin Heidelberg, 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Cloud computing is on everyone’s lips: as an innovative technology, as the next

generation of the Internet, as a fundamental transformation of the entire IT land-

scape, and as an auspicious opportunity to introduce new business ideas. But what is

actually at the heart of this notion?

As a result of the multi-faceted viewpoints and the interests expressed by the

various stakeholders, cloud computing is perceived as a rather fuzzy concept. It is

our ambition to try and clear some of the haze surrounding the cloud computing

concept and thus pave the way both for its successful application and for advanced

research work and innovation.

In only a few months, we were able to compile the available material on cloud

computing – which has become quite comprehensive in the meantime – and to

condense it to fit into a smart book. But this could only succeed with the help of

many colleagues from research organizations, but especially from the industry.

They contributed a never-ending stream of new input and helped us in numerous

discussions to develop a more differentiated picture of this exciting topic.

As is common with most disruptive technologies, the opinions on cloud comput-

ing diverge strongly in terms of acceptance and risk assessment. There are companies

that cannot relate yet to the concept of using and deploying dynamic IT services,

while others are at the cutting edge of this technology, some of them writing success

stories that make headlines. This book will help our readers to study cloud computing

rather unemotionally in the first place before they can enthusiastically take up its

challenges and opportunities.

Due the fact that the discussion about cloud computing always has to consider

both its technological and economic aspects, this book will be of major interest

to a broad audience. It is equally intended for the students of our courses at the

Karlsruhe Institute of Technology (KIT) and at other universities, for interested

software engineers, and for future-oriented decision-makers. We trust that the

technical information compiled here is rich and coherent. But this book should

also be an interesting read for top executives and managers.

v

Wewould like to take the opportunity to thank everybody who contributed to the

making this book. We received continuing and substantial support by the KIT focus

COMMputation that helped to realize this book. Our special thanks go to Anja

Langner and Bianca Pagliosa for their invaluable help in creating the illustrations,

and to our families and friends for their understanding and support, and their

patience when, once again, we sacrificed our leisure time for this book.

Karlsruhe Christian Baun

March 2011 Marcel Kunze

Jens Nimis

Stefan Tai

vi Preface

Contents

1 Introduction . 1

1.1 What Is This Book About? . 1

1.2 Definition . 3

1.3 Outline of This Book . 4

2 Cloud Basics . 5

2.1 Virtualization . 5

2.1.1 Benefits and Drawbacks of Virtualization . 5

2.1.2 Virtualization Concepts . 7

2.2 Service-Oriented Architectures . 10

2.2.1 The Properties of SOA . 10

2.2.2 How Is an SOA Implemented? . 12

2.3 Web Services . 13

2.3.1 Interoperability . 13

2.3.2 SOAP Versus REST . 14

3 Cloud Architecture . 15

3.1 Public, Private, and Hybrid Clouds . 15

3.2 The Technical Landscape of Cloud Services . 16

3.3 Infrastructure as a Service . 18

3.4 Platform as a Service . 18

3.5 Software as a Service . 20

3.6 Humans as a Service . 21

3.7 Other Categories of Cloud Services . 22

4 Selected Cloud Offerings . 23

4.1 Amazon Web Services . 23

4.1.1 Amazon Elastic Compute Cloud (EC2) . 25

4.1.2 Amazon Simple Storage Service (S3) . 28

4.1.3 Amazon Elastic Block Store (EBS) . 29

vii

4.1.4 Amazon Simple Queue Service (SQS) . 29

4.1.5 Amazon SimpleDB . 30

4.1.6 Amazon Relational Database Service . 30

4.1.7 The Amazon Web Services as ‘Team Players’ 31

4.2 Google Cloud Services . 33

4.2.1 Google App Engine . 33

4.2.2 Google Storage . 34

4.2.3 Google Cloud Print . 35

4.3 Windows Azure . 36

4.4 Salesforce.com . 37

4.5 Cloud Gaming . 38

4.6 Cloud Operating Systems . 38

5 Cloud Management . 39

5.1 Service Level Agreements (SLAs) . 39

5.2 Lifecycle and Automation . 40

5.3 Management Services and Tools . 41

5.3.1 Monitoring . 41

5.3.2 Control . 41

5.3.3 Development . 45

5.4 Security Management . 46

5.5 Risk Management . 47

5.6 Legal Compliance . 48

6 Open Source Cloud Stack . 49

6.1 Physical and Virtual Resources . 49

6.2 Eucalyptus . 51

6.2.1 Architecture and Components . 51

6.3 OpenNebula . 54

6.4 Nimbus . 54

6.5 CloudStack . 55

6.6 OpenStack . 55

6.7 AppScale . 56

6.8 TyphoonAE . 56

6.9 Apache Hadoop . 56

6.9.1 MapReduce . 57

6.9.2 Hadoop Distributed File System . 57

6.9.3 Pig . 59

6.9.4 Hive . 59

6.9.5 Hadoop as a Service . 59

6.10 The OpenCirrus Project . 60

viii Contents

7 Economic Considerations . 63

7.1 Fields of Application . 63

7.2 Evaluation Models . 64

7.2.1 Cost Models . 65

7.2.2 TCO Framework . 66

7.3 Business Models . 66

8 Opportunities and Risks . 69

8.1 Market Development . 69

8.2 Situational Evaluation . 70

8.3 Conclusion . 71

9 Appendix . 73

9.1 Performing EC2 Tasks with the Amazon Tools . 73

9.2 Performing EBS Tasks with the Amazon Tools . 75

9.3 Performing RDS Tasks with the Amazon Tools . 76

9.4 Performing S3 Tasks with s3cmd . 77

9.5 Using Google App Engine . 77

9.6 Using AppScale . 79

9.7 Installing and Using Eucalyptus . 79

9.8 Data Mining with Amazon Elastic MapReduce . 82

Glossary . 85

Bibliography . 89

Index . 93

Contents ix

.

Chapter 1

Introduction

With this book, we want to give our readers an overview of cloud computing

architecture, services, and applications, but it is not intended to be exhaustive. It

is our aim to bring all readers up to date on this technology and thus to provide

a common basis for discussion. This book does not require any knowledge of the

technological background.

1.1 What Is This Book About?

Cloud Computing is a buzz-word in today’s information technology (IT) that

nobody can escape. But what is really behind it? There are many interpretations

of this term, but no standardized or even uniform definition. Cloud computing

fosters the provision and use of IT infrastructure, platforms, and applications of any

kind in the form of services that are electronically available on the Web. The term

cloud hints at the fact that these services are provisioned by a provider on the

Internet (or on the intranet of a larger organization). Users of cloud services, on the

other hand, can propose their own offerings as services on the Internet or on an

intranet.

Usually, cloud resources are virtualized: This way, cloud users always have the

desired and required view on their infrastructure, and their applications are not

subject to any systemic dependencies or constraints.

Moreover, cloud services can be scaled dynamically: If an application requires

additional resources, these can be added immediately and without much effort by an

automatic process. Thus, Web application developers with innovative ideas do not

have to invest heavily in new hardware when founding a company. They can obtain

the required resources flexibly from a provider while focusing on their business

idea. With growing demand, the infrastructure can be adjusted automatically to the

extended requirements.

Cloud computing adopts the ideas of utility computing. The required number

of resources are made available and must be paid for. For unused resources,

C. Baun et al., Cloud Computing, DOI 10.1007/978-3-642-20917-8_1,
Springer-Verlag Berlin Heidelberg 2011

1

nothing will be charged. Cloud computing is therefore of economic significance

since, due to its flexibility in provisioning and using its services, considerable

savings are possible. The capacities which are available for use upon request

are enormous, creating economies of scale with a very favorable price-performance

ratio.

In the meantime, several commercial providers, such as Amazon, Google, or

Microsoft have emerged. Their offerings, however, are of different types: Amazon

offers virtualized resources for generic use while the clouds provided by Google

and Microsoft allow application hosting. With every provider striving for a com-

petitive edge, all current offerings are indeed proprietary and there are no standards

so that, in general, a quick provider change is not an easy task.

Cloud computing critics like to allege this danger of vendor lock-in besides

possible security concerns. Mainly established IT managers and department heads

preach caution. But a closer look reveals that these arguments very often seem to

aim at defending their ‘inherited’ vested rights in classical data centers. For this

reason, mostly young companies (startups) that do not suffer from these

dependencies take advantage of this new technology. But there are also

established companies which have approached the subject of cloud computing

and can already boast a sustainable rise in efficiency thanks to its use. Besides

taking advantage of public clouds, companies are increasingly relying on their

own private clouds.

From the customer’s perspective, there are a number of options that foster more

productive and flexible work: By taking advantage of the offerings available in the

market, purchasers of IT services are able to gain independence from the classical,

static data center operations. In this context, cloud computing develops a force of
creative destruction and old structures are replaced by new ones [25, 8].

The Corporate Executive Board (CEB) in Washington presented a study

based on interviews held with 200 business and IT executives [62]. For the

next years, the study predicts that the classical IT departments will lose a great

deal of their responsibilities to business management with staff consequently

shrinking to a quarter of their current numbers. The central drivers of these

changes are cloud computing, social media, and an increase in the number of so-

called knowledge workers – all this combined with a company IT which has used

up most of its potential for efficiency enhancement. With increasingly

specialized cloud services prevailing, business management is gaining the ability

to purchase IT solutions independently from and even by bypassing the internal

IT department.

Similarly, knowledge workers can use their smart end devices and their social

networks to obtain information on IT systems and the associated services by

themselves.

This also changes the role of the CIO who will either become the head of a slim,

internal shared-services department or act as a purchasing agent and manager of

external services in the future. In this scenario, the classical data center is bound to

change into an IT service center.

2 1 Introduction

1.2 Definition

Although there is no standardized, uniform definition of cloud computing, its basic

concepts as well as its general objectives are undisputed: Cloud computing uses

virtualization and the modern Web to dynamically provide resources of various

kinds as services which are provisioned electronically. These services should be

available in a reliable and scalable way so that multiple consumers can use them

either explicitly upon request or simply as and when required.

From the cloud provider’s perspective, this usually implies a multi-tenant

architecture and a usage-based billing model. Thus, we can define the term cloud
computing as follows:

By using virtualized computing and storage resources and modern Web technologies, cloud

computing provides scalable, network-centric, abstracted IT infrastructures, platforms, and

applications as on-demand services. These services are billed on a usage basis.

This definition indeed does not specify whether the services are provided by

a distributed system or a single, high-performance server, such as a mainframe.

This is in contrast to grid computing which always uses a distributed system.

Usually, cloud services also rely on a distributed infrastructure, but their manage-

ment is typically determined in a central (and proprietary) manner by a single

provider. This is another difference between cloud computing and grid computing

where distributed nodes are usually autonomous. For an extensive discussion on

this topic, see [30].

Another decisive factor for cloud computing is its economic impact. Due to

its strict service-orientation and the utilization of Web standards and the Internet

as an integrated technology and business platform, cloud computing is well-

positioned for various kinds of applications. This includes in particular Web

applications and modular services in distributed business networks and process

chains.

An often-quoted definition of cloud computing was established by the National

Institute of Standards and Technology (NIST) in the U.S. [105]. It specifies five

essential characteristics of cloud computing, three different service models, and

four different deployment models. The essential characteristics are:

• On-demand self-service: Services can be provided unilaterally and on demand

to consumers without requiring human interaction.

• Broad network access: Services are available over the network in real-time

through standard mechanisms.

• Resource pooling: The resources are pooled to enable parallel service provision
to multiple users (multi-tenant model), while being adjusted to the actual

demand of each user.

• Elasticity: Resources are rapidly provisioned in various, fine-grained quantities

so that the systems can be scaled as required. To the consumer, the resources

appear to be unlimited.

1.2 Definition 3

• Measured quality of service: The services leverage a quantitative and qualitative
metering capability so that usage-based billing and validation of the service

quality are possible.

The service models and deployment models will be discussed in Chap. 3.

1.3 Outline of This Book

This book first introduces the foundation of cloud computing with its basic

technologies, such as virtualization and Web services. Then, the cloud architecture

and its service modules will be discussed. The following chapters cover selected

cloud offerings and management tools; in particular, security and data privacy

issues will be dealt with. Then, we will present current open source developments,

such as Hadoop and Eucalyptus. The OpenCirrusTM project of HP, Intel, and

Yahoo!, in which the authors of this book take part as development partners,

picks up on these topics. This project examines the foundation of cloud systems

and cloud applications. Next, economic considerations, for instance cost and

business models, will be discussed. Finally, an evaluation of the cloud market

situation is given. The appendix contains some practical examples of how to use

cloud resources or cloud applications and the glossary provides concise definitions

of central terms.

We trust that our dear readers will enjoy this book from the first to the last page.

Nevertheless, the individual chapters are written in such a way that each of them

can be read and understood independently from the others. Readers who are less

interested in the technical details might want to skip Chap. 2 and delve into the heart

of the matter. If your time is tight and you would like to follow a path leading to

technical architecture topics, Chaps. 1, 3, 5, 7, and 8 will be of interest to you. There

is also a path for readers who rather want to focus on economic topics (Chaps. 1, 4,

6–8). These paths are shown schematically in Fig. 1.1.

Fig. 1.1 How to find your way through this book

4 1 Introduction

Chapter 2

Cloud Basics

One of the appealing aspects of cloud computing is that it hides the complexity of IT

technology from users and developers. No need to know details of how a service is

generated – it is the service provider’s job to provide a corresponding abstraction

layer. This chapter contains an overview of some technologies on which cloud

computing depends: virtualization, service-oriented architectures (SOA), and Web

services.

2.1 Virtualization

Resource virtualization is at the heart of most cloud architectures. The concept of

virtualization allows an abstract, logical view on the physical resources and

includes servers, data stores, networks, and software. The basic idea is to pool

physical resources and manage them as a whole. Individual requests can then be

served as required from these resource pools. For example, it is possible to

dynamically generate a certain platform for a specific application at the very

moment when it is needed. Instead of a real machine, a virtual machine is used.

2.1.1 Benefits and Drawbacks of Virtualization

For a provider of IT services, the use of virtualization techniques has a number of

advantages [4]:

• Resource usage: Physical servers rarely work to capacity because their

operators usually allow for sufficient computing resources to cover peak

usage. If virtual machines are used, any load requirement can be satisfied from

the resource pool. In case the demand increases, it is possible to delay or even

avoid the purchase of new capacities.

C. Baun et al., Cloud Computing, DOI 10.1007/978-3-642-20917-8_2,
Springer-Verlag Berlin Heidelberg 2011

5

• Management: It is possible to automate resource pool management. Virtual

machines can be created and configured automatically as required.

• Consolidation: Different application classes can be consolidated to run on

a smaller number of physical components. Besides server or storage consolida-

tion, it is also possible to include entire system landscapes, data and databases,

networks, and desktops. Consolidation leads to increased efficiency and thus to

cost reduction.

• Energy consumption: Supplying large data centers with electric power has

become increasingly difficult, and, seen over its lifetime, the cost of energy

required to operate a server is higher than its purchase price. Consolidation

reduces the number of physical components. This, in turn, reduces the expenses

for energy supply.

• Less space required: Each and every square yard of data center space is scarce

and expensive. With consolidation, the same performance can be obtained on

a smaller footprint and the costly expansion of an existing data center might

possibly be avoided.

• Emergency planning: It is possible to move virtual machines from one resource

pool to another. This ensures better availability of the services and makes it

easier to comply with service level agreements. Hardware maintenance windows

are inherently no longer required.

Since the providers of cloud services tend to build very large resource centers (IT
factories), virtualization not only leads to a size advantage, but also to a more

favorable cost situation. This results in the following benefits for the customer:

• Dynamic behavior: Any request can be satisfied just in time and without any

delays. In case of bottlenecks, a virtual machine can draw on additional

resources (such as storage space, I/O capabilities).

• Availability: Services are highly available and can be used day and night

without stop. In the event of technology upgrades, it is possible to hot-migrate

applications because virtual machines can easily be moved to an up-to-date

system.

• Access: The virtualization layer isolates each virtual machine from the others

and from the physical infrastructure. This way, virtual systems feature multi-

tenant capabilities and, using a roles concept, it is possible to safely delegate

management functionality to the customer. Customers can purchase IT

capabilities from a self-service portal (customer emancipation).

A drawback of virtualization is the fact that the operation of the abstraction layer

itself requires resources. Modern virtualization techniques, however, are so sophis-

ticated that this overhead is not too significant: Due to the particularly effective

interaction of current multicore systems with virtualization technology, this perfor-

mance loss plays only a minor role in today’s systems. In view of possible savings

and the quality benefits perceived by the customers, the use of virtualization pays

off in nearly all cases.

6 2 Cloud Basics

Another problem is that after the consolidation, more systems need to be

operated and managed: Besides the virtual machines, there is the physical infra-

structure. By managing the resources using sophisticated management tools, the

total balance is nevertheless positive because much less staff is required in practice.

2.1.2 Virtualization Concepts

Virtualization stands for a variety of different concepts and technologies, which

differ by their implementation, relevance to practical use, and frequency of use.

2.1.2.1 Operating System Virtualization

The use of operating system virtualization or partitioning (such as IBM LPARs) in

cloud environments may help to solve security and confidentiality problems, which

would otherwise impair the acceptance of the cloud approach.

For this type of virtualization, which is also called ‘container’ or ‘jails’, the host

operating system plays a major role. This is a concept where multiple identical

system environments or runtime environments, which are completely isolated from

each other, run under one operating system kernel (see Fig. 2.1). Seen from the

outside, virtual environments appear as autonomous systems. All running

applications use the same kernel, but they can only see the processes belonging to

the same virtual environment.

Mainly Internet service providers (ISPs), who offer (virtual) root servers, prefer

this kind of virtualization because it is associated with a minor performance loss

and a high degree of security. The drawback of operating system virtualization is its

reduced flexibility: While multiple independent instances of the same operating

system can be used simultaneously, it is not possible to run different operating

systems at the same time. Popular examples of operating system virtualization are

the container technology from Sun Solaris, OpenVZ for Linux, Linux-VServer,

FreeBSD Jails, and Virtuozzo.

Fig. 2.1 The concept of

operating system

virtualization (container)

2.1 Virtualization 7

2.1.2.2 Platform Virtualization

Platform virtualization allows to run any desired operating systems and applications

in virtual environments. There are two different models: Full virtualization and

paravirtualization. Both solutions are implemented on the basis of a virtual machine

monitor or hypervisor.

The hypervisor is a minimalistic meta-operating system used for distributing the

hardware resources among the guest systems and for access coordination. A type-1

hypervisor is built directly on top of the hardware, a type-2 hypervisor runs under

a traditional basic operating system (see Fig. 2.2).

Full virtualization is based on the simulation of an entire virtual computer with

virtual resources, such as CPU, RAM, drives, network adapters, etc. including its

own BIOS. Since the access to the most important resources, such as the processor

and the RAM, is passed through, the processing speed of the guest operating

systems nearly equals the speed to be expected if there was no virtualization.

Other components, e.g. drives or network adapters, are emulated. While this

decreases the performance, it allows to run unmodified guest operating systems.

Paravirtualization does not provide an emulated hardware layer to the guest

operating systems, but only an application interface. For this purpose, the guest

operating systems need to be modified because any direct access to hardware must

be replaced by the corresponding hypervisor interface call. This is also referred to

as hyper calls (just like system calls), which are used by the applications to call

functions in the operating system kernel. Since this approach allows the guest

system to participate actively in the virtualization (at least to some extent), a higher

throughput than with full virtualization can be obtained, especially for I/O-intensive

applications. Examples of full virtualization are the VMware products [135] or,

specifically for Linux, the Kernel-based Virtual Machine (KVM). Under Linux,

mostly Xen-based solutions are used for paravirtualization [14]. They play an

important role, particularly in the realization of the Amazon Web Services [50].

2.1.2.3 Storage Virtualization

Cloud systems should also offer dynamically scalable storage space as a service. In

this context, storage virtualization boasts a number of advantages. The fundamental

Fig. 2.2 Type-1 hypervisor

(virtual machine monitor)

8 2 Cloud Basics

idea of storage virtualization is to separate the data store from the classical file

servers and to pool the physical storage systems. Applications use these pools to

dynamically meet their storage requirements. For the data transfers, a special

storage area network (SAN) or a local company network (LAN) is used. Data for

cloud offerings is mostly available in the form of Web objects that can be retrieved

or manipulated over the Internet. An additional abstract administration layer is

interposed between the clients and the storage landscape so that the representation

of a datum is decoupled from its physical storage. This has a variety of advantages

with respect to data management and access scalability. Central management also

allows to operate the distributed storage systems at a lower cost.

Moreover, different categories of data storage can be organized in storage

hierarchies (tier concept). This makes it possible to implement an automated

lifecycle management for data sets, from tier-0 with the most stringent availability

and bandwidth requirements to lower and cheaper tier levels with a correspondingly

lower quality of service. The data can be migrated between these levels without

affecting the service. By using snapshots, even large data quantities can be backed

up without a special backup window. A further advantage of storage virtualization

is that distributed mirrors may be created and managed in order to avoid service

disruptions in case of malfunctions. Amazon, for instance, creates up to three copies

in different data centers when storing data.

2.1.2.4 Network Virtualization

Techniques such as load balancing are essential in cloud environments because it

must be possible to dynamically scale the services offered. The resources are

usually implemented as Web objects. For this reason, it is recommended to apply

the procedures commonly used for Web servers: Services can be accessed via

virtual IP addresses. Through cluster technology, they realize load balancing as

well as automatic failover in case of a failure. By forwarding DNS requests, it is

also possible to integrate cloud resources into the customer’s Internet namespace.

Network virtualization is also used for virtual local networks (VLANs) and

virtual switches. In this case, cloud resources appear directly in the customer’s

network. Internal resources can thus be replaced transparently by external

resources. VLAN technology has the following advantages:

• Transparency: Distributed devices can be pooled together in a single logical

network. VLANs are very helpful when designing the IT infrastructure for

geographically disparate locations.

• Security: Certain systems which require particular protection can be hidden in

a separate virtual network.

On the other hand, VLANs involve more overhead for network administration

and for programming active network components (switches, etc.).

2.1 Virtualization 9

2.1.2.5 Application Virtualization

Application virtualization is a software sales model where centrally managed

applications are offered to the customers over a network. The advantages of

application virtualization compared to traditional software installations are:

• Easier administration

• Automatic management of updates and patches

• Compatibility: all users work with the same software portfolio

• Global availability

There are two different methods for deploying virtual applications:

• Hosted application: The application is available on the Internet and is transmit-

ted to the client, e.g. using a streaming protocol.

• Virtual appliance: The application can be downloaded and used on the

customer’s own computer.

In this case, a virtual environment provides all application files and components

required by the program for it’s execution. The virtual environment acts as a buffer

between the application and the operating system, preventing conflicts with other

applications or operating system components. In cloud environments, application

virtualization is an important foundation of the SaaS concept (Software as a Service,

see below) which is used for the dynamic provision of software components.

2.2 Service-Oriented Architectures

Besides virtualization, service-oriented architectures and Web services are to be

considered as the fundamental prerequisites for cloud computing. Service-oriented

architectures (SOA) are architectures whose components are implemented as inde-

pendent services. They can be flexibly tied together and orchestrated and they can

communicate via messages in a loosely coupled configuration. With cloud comput-

ing, virtualized IT infrastructures, platforms, and entire applications are implemented

as services and made available for consumption in service-oriented architectures.

In the case of public clouds (see Chap. 3), services are offered on the Internet

based on standardized Web protocols and interfaces. In this context, Web services
and RESTful services have proven to be useful. For an SOA, however, the Web

services technology is not mandatory.

2.2.1 The Properties of SOA

SOA is a style of software architecture, which defines how services are offered and

used. These services may not only be used by customers, but can also be consumed

10 2 Cloud Basics

by other services and applications. Often, services are orchestrated here as business

processes, which means that a customer specifies a certain order for performing

calls and data exchanges with various services. The process itself can be provi-

sioned as a service. Thus, the promise of SOA is to promote IT architectures to the

business process abstraction layer, or, conversely, to enable a uniform approach for

the description and realization of business processes using IT services.

Typical properties of an SOA are:

• It consists of distributed components, i.e. the services.

• Heterogeneous service consumers and service providers are interoperable across

platforms; different programming languages and platforms can be used to

implement individual services.

• Services are loosely coupled and will be bound dynamically at runtime. An SOA

consequently allows dynamic adjustments, which have a local (but no system-

wide) effect.

A short and concise definition of service-oriented architectures can be found in [13]:

An SOA is a system architecture that represents varied, different, and possibly incompatible

methods or applications as re-usable and openly accessible services and thus allows to use

and re-use them in a platform- or language-independent manner.

Figure 2.3 illustrates the basic, theoretical interaction between service pro-

vider, service consumer, and service directory for the dynamic binding of services

at runtime. A service consumer can locate a suitable service in a service directory

or learn of its existence by using a broker. If a suitable service has been found or

brokered, the service consumer receives a reference (address, endpoint) for

accessing the service, i.e. exchanging messages with it. Then, the service can

be called, i.e. a message can be sent. The service provider replies by sending

a message back.

In practice, service endpoints are often directly communicated as part of the

message. Attempts to set standards for service directories, such as Universal

Fig. 2.3 SOA participants and actions

2.2 Service-Oriented Architectures 11

Description, Discovery and Integration (UDDI), were not successful. By sending

endpoints directly in a message, it is possible to broker and bind services at runtime

in a very dynamic, target-oriented way.

2.2.2 How Is an SOA Implemented?

An SOA may be implemented in many ways. The actual implementation depends

primarily on the decisions taken with respect to communication and integration

(coupling) between service provider and service consumer. Common approaches

are above all Web services based on the Web Service Description Language

(WSDL) and SOAP as well as RESTful services.

Services can be integrated into an SOA either by using point-to-point-

connections or the hub-and-spoke approach. Each point-to-point-connection

handles the connection between a service provider and a service consumer on an

individual basis. For this purpose, the service consumer needs to know the endpoint

of the desired service (IP address, URL). The service request is then addressed

directly to the appropriate service provider.

With the hub-and-spoke approach, a broker acts as an intermediary between

service providers and service consumers. The service consumer does not know the

exact service provider address. For each service, a symbolic name exists, such as a

URI. In the SOA context, the broker is called Enterprise Service Bus (ESB). Its

tasks include routing, i.e. controlled, reliable forwarding of messages between the

services across different systems and independently of the protocols in use. Another

task is the transformation of data from one format to another. In its simplest case,

this could refer to upgrading or downgrading different data types between 32-bit

and 64-bit platforms, but also to the conversion between differing XML standards.

Further tasks are the administration of a service directory and, depending on the

implementation, the orchestration of messages.

Figure 2.4 contrasts point-to-point connections with the hub-and-spoke approach

using an ESB.

Fig. 2.4 Point-to-point-connections vs. Enterprise Service Bus

12 2 Cloud Basics

2.3 Web Services

Unlike distributed systems, which are interconnected over local networks,

distributed cloud computing systems integrate heterogeneous resources which, in

theory, could be located at any place on this earth where an Internet connection is

available. The disadvantage of Internet connections compared to local networks is

that they automatically entail problems, such as slow response times, low data rates,

and potentially unreliable connections. In such environments, it is recommended to

use a loosely coupled, asynchronous, message-based communication via Web

services.

Just like with service-oriented architectures, a large number of different

definitions for Web services exist. The Web Services Architecture Working

Group of the W3C defines Web services as follows [137]:

A Web service is a software application identified by a URI, whose interfaces and binding

are capable of being defined, described and discovered by XML artifacts and supports direct

interactions with other software applications using XML based messages via internet-based

protocols.

Wohlstadter and Tai [32] define Web services as distributed middleware, which

enables machine-to-machine communication on the basis of Web protocols. Web

services are defined not so much by the technology they use, but rather by their

intended use. They propagate a compositional approach for application develop-

ment. Functions can be integrated into an application using external, distributed

services; and it is also possible to address legacy systems via Web services.

2.3.1 Interoperability

Web services describe the standards required to format and process messages as

well as the standards for service interfaces. Two popular approaches are SOAP/

WSDL-based Web services and RESTful (REpresentational State Transfer)

services. SOAP is a messaging protocol and WSDL (Web Services Description

Language) is an interface description language. Thus, SOAP/WSDL-based services

have programmatic interfaces. REST, on the other hand, describes a style of

software architecture, which is built on top of HTTP. RESTful services can only

be invoked from the uniform HTTP interface. Both approaches use uniform

resource identifiers (URIs) to identify the required services.

In their basic form, Web services describe only the primitives required to

exchange documents (data) between service consumers and service providers.

There are standards for transactional, reliable, and secure services for SOAP/

WSDL. The Web Services Platform Architecture (WS-*) describes a set of

extensions, which can be composed in a modular way; each of these extensions

addresses a desired quality-of-service property.

2.3 Web Services 13

The most common data exchange format is XML. XML is mandatory for SOAP/

WSDL and commonly used with RESTful services. The conversion of XML data

structures to programming language-specific data structures is done using

standardized mapping mechanisms. An alternative data exchange format is JSON

(JavaScript Object Notation), which has become quite popular, in particular when

RESTful services are consumed directly in the Web browser by JavaScript.

TheWeb service interface for SOAP/WSDL is described inWSDL, an extension

of the XML schema specification. It describes Web services both abstractly in terms

of types, messages, operations and port types, and concretely in terms of transport

protocol-specific, available addresses (endpoints) to invoke the service. REST uses

the generic HTTP methods (i.e. GET, PUT, POST, DELETE, etc.) rather than

specific operations. Thus, REST is derived directly from the principles of the

WWW and also uses its advantages, such as simple error handling, through

standardized HTTP error codes.

2.3.2 SOAP Versus REST

SOAP is a messaging standard, which defines an XML-based message format,

specifies processing rules for messages, describes conventions, and allows

mappings to different Internet transport protocols (including HTTP).

SOAP messages are always XML documents consisting of three parts: A virtual

envelope, the SOAP envelope, contains two elements: the optional SOAP header
that may contain information such as routing and security details (authentication

and authorization), and the mandatory SOAP body. The body element

accommodates the actual message. It may include information on the data exchange

or instructions for a remote procedure call.

SOAP is based on the chain of responsibility pattern; it is possible to define a

series of distributed steps to process a SOAP message. This results in interesting

options for Web service intermediaries or for the integration of specialized

middleware functionality to support different qualities of service as addressed by

the Web Services Platform Architecture.

REST, however, uses the HTTP semantics and thus prescribes a stateless

communication (i.e. the server does not maintain any client state information).

This is why REST features point-to-point connections where any necessary infor-

mation is encoded in the message itself. This facilitates, e.g. the interposition of

caches or the replication of servers.

14 2 Cloud Basics

Chapter 3

Cloud Architecture

Cloud architectures can be analyzed from two different perspectives, i.e., from an

organizational or from a technical point of view. The organizational view, which

will be discussed in Sect. 3.1 below, makes a distinction based on the extent to

which the users’ and providers’ organizational units are separated from each other,

while the technical view in Sect. 3.2 is oriented towards functional features. Thus,

the organizational view corresponds to the deployment model and the technical

view to the service models as specified in the NIST definition [105] we presented in

Sect. 1.2.

3.1 Public, Private, and Hybrid Clouds

A public cloud (also called ‘external cloud’) comprises all cloud offerings where

the providers and the potential users do not belong to the same organizational unit.

The providers make their cloud accessible to the public and usually offer a self-

service Web portal where the users can specify their desired scope of services. For

this purpose, no overall framework agreement is necessary, but the contractual

obligations are entered within the scope of the performance specifications. The

services are billed on the basis of the resources actually used in the corresponding

period.

In contrast to this model, the providers and users of a so-called private cloud

(also referred to as ‘internal cloud’ or ‘IntraCloud’) belong to the same organiza-

tional unit. The main reason why a private cloud would be preferred over a public

cloud is usually security: In the private cloud, control over the data remains with the

users or their organization.

This way, sensitive information, such as design plans or manufacturing data,

can – supposedly – be better protected and regulatory measures, for example with

respect to personal health data, can be complied with.

C. Baun et al., Cloud Computing, DOI 10.1007/978-3-642-20917-8_3,
Springer-Verlag Berlin Heidelberg 2011

15

While the services in a private cloud operate on resources belonging to the

organization, some developers try to realize the interfaces by using the same

technology as for the public cloud.

The objective is both to make sure that the tools which are available in the public

cloud can also be used in the private cloud, and to keep the door open to be able to

scale the applications that were first developed for the private cloud for later use in

the public cloud.

Scenarios where services from the public cloud and from the private cloud are

brought together, are referred to as hybrid cloud. With a hybrid cloud, certain

functionalities or load peaks are usually transferred to the public cloud, while

normal operation relies on the organization’s private resources. According to the

security considerations mentioned above, care has to be taken that only non-critical

functions or data are transferred. Figure 3.1 shows how the three types, i.e., public

cloud, private cloud, and hybrid cloud are positioned with respect to each other.

3.2 The Technical Landscape of Cloud Services

As described in the previous chapters, cloud computing allows the deployment and

use of heterogeneous IT infrastructures, platforms, and applications as Web

services. So it is no surprise that the existing cloud services landscape presents

itself as correspondingly diverse, and, at the first glance, heterogeneous with respect

to functionality and objectives. Based on a conceptual architecture, we will now

draw up a cloud computing map which allows us to categorize the available cloud

offerings and technologies and then compare the instances in each category. This

enables prospective cloud users to determine the available choice of offerings or

complementary technologies for their particular use case and find the optimum

solution. The discussion in this section is based on [20].

Fig. 3.1 Public cloud, private cloud, and hybrid cloud

16 3 Cloud Architecture

The architecture depends on a stack or layer model, i.e., it consists of several

layers which are arranged according to their degree of abstraction. In this context,

the higher and more abstract layers may consume the services of the lower and more

concrete layers in order to realize services of their own.

Layering within the stack is not strict, i.e., a higher layer may consume the

services of all underlying layers and not only those of the one directly below it.

Each layer is characterized by properties of its own and some layers are

subdivided into sub-layers. Cloud services having their own services and interfaces

which make them eligible to be assigned to multiple layers, are mapped to the

highest layer possible because this is usually the layer through which potential users

are primarily addressed. With cloud computing being characterized by a dynamic

evolution at the time this book was written, this classification is not intended to be

complete, but rather represents a snapshot of the currently known or particularly

archetypal cloud services.

The three main layers, which subdivide the resulting stack shown in Fig. 3.2,

follow the Everything-as-a-Service paradigm (XaaS) with its four main

representatives: Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

Fig. 3.2 Cloud architecture

stack diagram

3.2 The Technical Landscape of Cloud Services 17

Software as a Service (SaaS), and Humans as a Service (HuaaS). We will define and

illustrate these in more detail in the following sections.

3.3 Infrastructure as a Service

The IaaS layer gives the users an abstracted view on the hardware, i.e., computers,

mass storage systems, networks, etc. This is achieved by providing a user interface

for the management of a number of resources in the resource set sub-layer (RS). It

enables the users to allocate a subset of the resources for their own use. Typical

functions available from the user interface include creating or removing operating

system images, scaling required capacities, or defining network topologies. More-

over, the interface provides the required functionality for operations, such as

starting and stopping operating system instances.

The items offered in the resource set can be further subdivided into the physical

resource set (PRS) class, whose members represent and offer proprietary physical

hardware, and the virtual resource set (VRS) class, which is built on top of

virtualization technologies such as Xen [14] and thus make virtual instances

available. Examples of PRS cloud services are Emulab [16] and iLO [15]. VRS

cloud services include Amazon EC2 [40], Eucalyptus [22], Nimbus [17], and

OpenNebula [26]. Even though the VRS services with their simplifying virtual

resources are much more common, the PRS services also have their right to exist,

e.g., when, for stability or performance reasons or due to specific hardware

requirements, indirection by a hypervisor should be avoided, but at the same time

the convenience and scope of functions for administering the cloud services are

indispensable.

Besides the resource set sub-layer described here, the infrastructure services too

belong to the IaaS layer. Compared to the resource set offerings, the infrastructure

services have a narrower application focus. For example, there are dedicated

infrastructure services for calculation tasks (Hadoop MapReduce [97]), for mass

storage (Amazon S3 [46], Zumodrive [143], Dropbox [69]) or for networks (Open-

Flow [24]). For an extended and commented list of IaaS cloud services and tools,

see Table 3.1.

3.4 Platform as a Service

The cloud services provided on the PaaS layer are usually not targeted to end users,

but rather to developers. These are programming environments (PE) and execution

environments (EE) where proprietary software written in a specific programming

language can be executed. Typical examples of these programming environ-

ments are Django Framework [68] or Sun Caroline [61]. They extend existing

programming languages, e.g., by adding class libraries which have a specific

18 3 Cloud Architecture

Table 3.1 Infrastructure as a service: offerings and tools

Organization Cloud service Reference Description

Amazon

Elastic Compute Cloud

(EC2) [40] Virtual servers

Amazon Dynamo [12] Key-value pair store

Amazon Simple Storage Service (S3) [46] Mass storage

Amazon SimpleDB [47] Database as a Service (DaaS)

Amazon CloudFront [36] Content Distribution Network (CDN)

Amazon SQS [48] Message queues

AppNexus AppNexus Cloud [57] Virtual servers

Bluelock Virtual Cloud Computing [60] Virtual servers

Bluelock Virtual Recovery [60]

Virtual server recovery in case of

failures

Cloud.com CloudStack [65] Open source IaaS

Dropbox Dropbox Cloud Storage [69] Mass storage

Emulab Emulab Network Testbed [16]

Emulation of logical networks for

experimental purposes

ENKI Virtual Private Data Centers [73]

Need-based provisioning of virtual data

centers

Reservoir Open Nebula [26] Virtual open source server pools

FlexiScale FlexiScale Cloud Computing [76] Virtual servers

GoGrid Cloud Hosting [82] Virtual servers

GoGrid Cloud Storage [82] Mass storage

Google Google Big Table [9] Distributed storage of structured data

Google Google File System [89] Distributed file system

HP iLO [15] Lights-out management

HP Tycoon [126]

Market-based allocation of cluster

resources

Joyent Accelerator [99] Virtual servers

Joyent Connector [99] Pre-configured virtual servers

Joyent BingoDisk [99] Mass storage

University of

Chicago Nimbus [108] Open source IaaS

Nirvanix Storage Delivery Network [99] Mass storage

Openflow OpenFlow [109] Local network simulation

OpenNebula

Project OpenNebula [114] Open source IaaS

Rackspace Mosso Cloud Sites [120] Pre-configured virtual servers

Rackspace Mosso Cloud Storage [120] Mass storage

Rackspace Mosso Cloud Servers [120] Virtual servers

Skytap Skytap Virtual Lab [127] Hybrid cloud test environments

Terremark Infinistructure [131] Virtual servers

todo GmbH flexIT [132] Virtual servers

Eucalyptus

Systems Eucalyptus [74] Open source AWS implementation

Zimory Zimory Public Cloud Market [141]

Distributed, market-based allocation of

IaaS resources

Zumodrive Hybrid Cloud Storage [143] Mass storage

10gen Mongo DB [33] Database for cloud storage

3.4 Platform as a Service 19

application focus. The application thus created then runs in an execution environ-

ment which is, from the project perspective, decoupled from the programming

environment.

Well-known examples of cloud-based execution environments are Google App

Engine [85], Azure by Microsoft [59] or Reasonably Smart by Joyent [99]. In the

case of Microsoft Windows Azure, a variety of tools and different programming

languages can be used on the basis of the Azure environment. Google App Engine

supports the creation and execution of Web applications written in Python or Java.

An example of how services from different architectural layers interact or are

built on top of each other, is the AppScale [58] programming environment, an open

source re-implementation of Google App Engine. AppScale implements their

functionality using the Eucalyptus infrastructure service mentioned above.

The interchangeability of parts of the stack described above, which is due to re-

implementation in open source projects, not only fosters technical alternatives, but

might, in some cases, prevent users from becoming too dependent on a particular

commercial cloud vendor (so-called vendor lock-in)—an issue that has often been the

target of criticism. Table 3.2 shows and describes further PaaS offerings and tools.

3.5 Software as a Service

Cloud software applications that directly address the end user belong to the SaaS

layer. This model frees the customers from the need to install the software locally

and thus to provide the required resources themselves. Seen from the cloud archi-

tecture perspective, the SaaS offering can be developed and operated by the

provider on the basis of a PaaS or IaaS offering.

Table 3.2 Platform as a service: offerings and tools

Organization Cloud services Reference Description

Akamai EdgePlatform [35] Content, site, application delivery

Facebook Facebook Platform [75]

Environment for applications in the Facebook

social network

Google App Engine [85]

Scalable execution environment for Web

applications

Microsoft Azure [59]

Programming and execution environment for

Windows applications

Microsoft Windows SkyDrive [103]

Platform for data synchronization between

heterogeneous end devices

NetSuite SuiteFlex [106] Business process development tool of NetSuite

Salesforce Force.com [78]

Development and operation of Salesforce CRM

extensions

Sun Project Caroline [61]

Development and operation of distributed Web

applications

Zoho Zoho Creator [142]

Development and operation of database-based

Web applications

20 3 Cloud Architecture

Within the SaaS offerings, we can distinguish application services, whose

functionality is mainly based on a single, simple application, and full-fledged,

complex applications. End users can directly access some of the application

services, such as Google Maps [90]. Other services are provided as components,

e.g., the OpenID [113] user management or the integration of social networks in

applications through OpenSocial [115]. Linking to these application services can

either be done by common static binding or by using so-called mash-ups [6] which

allow for light-weight, flexible binding.

Applications, such as Google Docs [88], Microsoft Windows Live [103], or

the central Salesforce.com [125] CRM system feature a much higher complexity

and a wider range of functions. The latter also shows how a full-fledged application

can be enhanced by adding other application services and how the SaaS and PaaS

layers can interact here: Salesforce.com offers third-party providers a platform

where they can develop and operate free or paid application services which add

to and extend the functionality of the existing central CRM system. For further

applications and application services, see Table 3.3.

3.6 Humans as a Service

HuaaS (Humans as a Service) is the top layer of the cloud computing stack. This

shows that the cloud paradigm is not restricted to IT services, but can also be

extended to include services provided by human beings as resources. Since humans

have certain capabilities that outperform computer systems, their technical integra-

tion as resources is a matter of particular interest. Some tasks, such as translation or

design services, where creativity is an important asset, are better accomplished by

this special resource.

Within the HuaaS layer, the predominant sub-category is crowdsourcing where

a group of human resources use the Internet to perform tasks of varying complexity

Table 3.3 Software as a service: offerings and tools

Organization Cloud services Reference Description

Adobe Photoshop Express [34] Online image processing

fluidOps

eCloud Manager

SAP Edition [77] SAP Landscape as a Service

Google Google Docs [88] Online office applications

Google Google Maps API [90]

Service for the integration of maps and geo-

information

Google OpenSocial [115]

Generic programming interface for the

integration of social networks into

applications

OpenID

Foundation OpenID [113]

Distributed cross-system user identity

management system

Microsoft Windows Live [103] Online office applications

Salesforce Salesforce.com [125] Extensible CRM system

3.6 Humans as a Service 21

and scope for a customer. A typical example of crowdsourcing again comes from

Amazon: Amazon Mechanical Turk [44] offers an interface where – mainly fine-

grained – tasks can be assigned to interested human resources who are paid an

equally small amount for their efforts.

Amazon Mechanical Turk works like a marketplace for crowdsourcing

offerings. However, so far only persons living in the U.S. and having a bank

account there may place their HuaaS tasks. Persons outside the U.S. may only

accept tasks from Amazon Mechanical Turk.

Typical crowdsourcing tasks require only little or no previous knowledge so that

a potentially large, dynamically scalable workforce is available to complete the

tasks posted there. In other crowdsourcing offerings, all participants can benefit

from artifacts provided by others, and they can judge their quality based on other

users’ ratings. YouTube [140] is a typical example of such an offering. Prediction

markets, for instance IOWA Electronic Markets [7], aggregate predictions of

individuals related to future events. Based on the majority opinion, they predict

the outcome of elections or sports events. Another interesting example of

crowdsourcing is the investigation of the British MPs’ expenses scandal in summer

2009 organized by The Guardian. The newspaper published more than 450,000

documents [96] and receipts online, so that the readers could view them and

evaluate their relevance. The work done by so many people significantly

contributed to uncover the facts of the scandal within a very short period of time.

3.7 Other Categories of Cloud Services

Besides the established service categories, i.e., IaaS, PaaS, SaaS, and HuaaS, there

are a large number of special services that are partly derived from them. Some

examples:

• High Performance Computing as a Service (HPCaaS). HPCaaS is intended to

make high performance computing available as a service. The focus of high-

performance computing is to minimize latency between the connected resources

and to optimize the data throughput. For this purpose, it is necessary that the

instances of a cloud infrastructure are physically located near each other.

OpenNebula is an example of an IaaS solution meeting this constraint. Several

companies offer corresponding solutions: Amazon Cluster Compute Instances

[38], Gridcore Gompute [93], Penguin Computing on Demand [119], Sabalcore

HPC on Demand [123], UNIVA UD UniCloud [134].

• Landscape as a Service (LaaS). Complex software with no or only limited multi-

tenancy support, such as SAP R3, is offered as an SaaS. This offer is targeted at

companies which aim at outsourcing their entire data center including hardware,

software, maintenance, and deployment. Such solutions are offered by fluid

Operations [77] and Zimory [141].

22 3 Cloud Architecture

Chapter 4

Selected Cloud Offerings

In the preceding Chap. 3, we discussed the cloud services architecture from

a technical point of view and thus mapped the landscape of cloud computing.

Actual cloud offers were only mentioned briefly. The aim of this chapter is to

give an overview of the offerings from vendors such as Amazon, Google,Microsoft,
and Salesforce and to present their capabilities as well as their intended use.

Our shortlist is made up of the offerings mentioned because they are well-known

and popular, and further, each of them plays the role of a prototype in its own cloud

architecture category. However, it must be stressed at this point that the field of

cloud computing is by far not limited to these major players. With their innovative

developments, especially mid-size and start-up companies play an important role

here. This is accounted for, among others, by the sections about cloud gaming and

cloud operating systems which describe more recent application classes of cloud

computing.

4.1 Amazon Web Services

Amazon Web Services (AWS) [50] is the umbrella name for all cloud offerings

from Amazon. The reason why this company, which is still mainly perceived as an

e-commerce shop, has committed itself to cloud computing is easy to see: Amazon

is compelled to maintain a considerable amount of IT resources to cope with the

seasonal peak periods, i.e. before Christmas or Thanksgiving. A large part of these

resources, however, sits idle for the rest of the year. Hence, the business idea to

offer the unused resources for money to third parties during low-usage times was

born. Currently, Amazon offers the following cloud services:

• Amazon Elastic Compute Cloud (Amazon EC2) [40]: EC2 enables users to

manage self-configured virtual servers running on Amazon’s data centers

using web services. For more details, see Sec. 4.1.1.

C. Baun et al., Cloud Computing, DOI 10.1007/978-3-642-20917-8_4,
Springer-Verlag Berlin Heidelberg 2011

23

• Amazon Simple Storage Service (Amazon S3) [46]: Amazon S3 provides a mass

storage infrastructure with an essentially flat structure to hold large data

quantities. S3 will be discussed below in Sect. 4.1.2.

• Amazon Elastic Block Store (EBS) [39] is used for persistent data storage in the

context of EC2 instances. This service will be dealt with in Sect. 4.1.3.

• Amazon Simple Queue Service (Amazon SQS) [48]: Amazon SQS implements

a messaging system based on message queues which accept messages transmit-

ted by sender applications (publishers) as input. Registered receiving

applications (subscribers) can then read these messages asynchronously (see

Sect. 4.1.4). SQS is a nice tool to easily develop scalable applications in the

cloud (see Sect. 4.1.7).

• Amazon SimpleDB [47]: Amazon SimpleDB is a cloud database, which

implements a simple database model reminiscent of a slimmed-down relational

database model. For more information, see Sect. 4.1.5.

• Amazon Relational Database Service (RDS) [45]: The Relational Database

Service implements a relational MySQL database in the Amazon cloud based

on an EC2 database instance.

• Amazon CloudFront [36]: Frequently, Content Distribution Networks (CDN)

are used for fast data delivery in web applications. CDNs provide a redundant

and geographically distributed data storage system. Each user receives the

requested data from the node which is best suited for that case. Amazon

CloudFront implements a Content Distribution Network on top of Amazon S3.

• Amazon Elastic MapReduce [41]: Amazon Elastic Map-Reduce allows to dis-

tribute data-intensive computations across any number of Amazon EC2

instances so that they can be scaled flexibly.

• Amazon Virtual Private Cloud (VPC) [49]: VPC facilitates the transparent

integration of AWS EC2 resources into the customer’s IT infrastructure. The

external resources are integrated into the customer’s network via a secure,

encrypted VPN connection so that it is possible to build a hybrid cloud. For

this service, Amazon charges the usual prices plus the data volumes transferred

over the VPN connection.

• AWS Import/Export [52]: The option to transfer very large data volumes by

shipping physical storage devices through regular mail appears to be anachronis-

tic at first glance. But since there are numerous practical problems when trans-

ferring large data volumes over a network, especially when in the order of several

petabytes, postal mail deliveries are preferred because they are faster, more

reliable and cheaper than transfers over the Internet. If a secure network connec-

tion cannot be established, sending the data by regular mail is also advantageous

in terms of data privacy. The data are stored in encrypted form on the storage

devices and the owner is identified by means of a certificate. Once the storage

devices have been integrated into Amazon’s data centers, only the certificate

holder is able to make them operational, enter the key and process the data.

Besides these cloud offerings, which are an official part of the AWS, more cloud

services are available. These, however, are only to be considered as supporting or as

24 4 Selected Cloud Offerings

partial functionalities, which depend on the above offerings. They will not be

discussed here any further. In the near future, additional AWS offerings are to

be expected, as the demand for a larger variety of cloud services will likely grow

over time.

4.1.1 Amazon Elastic Compute Cloud (EC2)

The virtual servers constituting the Amazon Elastic Compute Cloud are at the core

of the Amazon Web Services. To set up and permanently operate such a server, the

following steps are necessary:

• Selection of the region: Amazon defined four geographical regions for their

services, with different pricing for resource usage. These are the regions:

– US East) Virginia

– US West) California

– EU West) Ireland

– Asia Pacific) Singapore

• AMI selection: The virtual servers are created from Amazon Machine Images

(AMIs). These are like a blueprint to be used when creating new virtual servers.

Amazon provides pre-built images, which differ by the operating system and the

software packages installed. AMIs from Amazon are for example available for

various UNIX derivatives and also for Windows operating systems with differ-

ent environments installed, such as for web applications. Besides Amazon, a

number of third-party vendors, such as IBM, Oracle, and Sun, provide AMIs

including proprietary software packages. End users as well can create their own

images for later reuse. These AMIs can be published and put on the market using

a product ID (paid instances). The operating system and the installed software

packages are the main criteria when selecting a suitable AMI. To do so, users can

go to the AWS web pages, which give access to a separate Web portal that

includes assessment functions.

• Selection of the resource configuration and the availability zone: Another

preliminary consideration refers to the selection of the proper resource size for

the desired virtual server. The available resource configurations differ in the

processor performance as well as in the memory and hard disk sizes. The

customer is also required to select an availability zone in which the virtual

server should run. The regions mentioned above are subdivided into availability

zones, which are independent from each other in that they do not share critical

components and therefore cannot fail at the same time for the same reason.

A careful selection of the availability zone can therefore pay off in reduced

latencies and improved reliability for redundant servers. The US East region

offers four availability zones, while the US West, EU, and Asia Pacific
regions currently only comprise two availability zones each.

4.1 Amazon Web Services 25

• Generating a key pair: Users who want to access an Amazon E2 instance use the

so-called public key identification method. Prior to first-time use, a key pair

consisting of a public and a private key must be generated. The public key is

associated to the user account which is also required for billing purposes, and the

private key remains in the user’s working environment.

• Launching an instance: Once the above parameters have been defined accord-

ingly, the desired instance can be launched. After the launch, both a public IP

address and a private IP address are assigned dynamically to the new virtual

server. The public address can then be used to reach the computer from the

Internet, while the private address makes the computer visible to other Amazon

Cloud instances. Since both the private and the public addresses are assigned

dynamically each time an instance is launched, they are not suitable for perma-

nent server operation if the server needs to be restarted repeatedly during its life

cycle. For this case, Amazon provides static/elastic IP addresses, which – once

they have been reserved – are allocated time and again to the different new

server incarnations. Elastic IPs are therefore well suited for example for DNS

entries.

• Defining and configuring a security group: For security reasons, new instances

are not immediately accessible from the Internet after their generation. They

must rather belong to a so-called security group which defines a common set of

security settings. For such a group, it is for example possible to also enable the

access via the secure shell (SSH) using the corresponding port 22. Now, the

virtual server can be reached via SSH; for the authentication, the public key

method with the keys generated as described above is used.

• Storing instance states: When the state of a running instance changes during

operation, this change is not persistent. Once an instance has been terminated, all

changes are lost. In order to make state changes persistent beyond the runtime of

a virtual server, the state must consequently be stored outside the instance itself.

While Amazon S3 can be used for storing large, weakly structured data sets, it is

less suitable for typical file system operations. This is where Amazon Elastic

Block Store (EBS) comes in: It allows block-based access to a storage medium.

For the EC2 instance, EBS appears like an external hard disk. With the EBS

command set, it is possible to create storage volumes, associate them with EC2

instances, mount them as drives there, and use them as any other drive. After the

volume has been closed and unmounted in a controlled manner, e.g., when

terminating the instance, it can be made available to other new EC2 instances.

However, an EBS volume cannot be shared by multiple instances. A particularly

handy feature of the Amazon EBS and EC2 combination is the possibility to take

snapshots of the current EBS state as desired and to back them up in Amazon S3.

• Creating your own AMIs: The easiest way to build customized images is to use

a suitable pre-configured AMI as the basis which is initially put into operation

together with an EBS volume, as described above. The next step is to install the

specific add-ons on this AMI, as usually. Using a number of special commands,

which bundle the original image with the individual customizations, the user-

defined image can be created and stored in S3, protected by certificates. Once the

26 4 Selected Cloud Offerings

image has been registered, the customized instances can be used from within

Amazon S3.

• Tool support: All procedures described above can be executed using command

line commands. Those who find this too cumbersome have the choice of

a number of tools which are available from the AWS website. Among these

tools, AWS Management Console, AWS Toolkit for the Eclipse development

environment, and ElasticFox as a plug-in for the Firefox web browser are

outstanding. Each of these tools conveniently provides certain subsets of the

AWS interface, which are specific to the user group addressed (see Sect. 5.3 and

Chap. 9).

The operating costs for on-demand EC2 instances are made up of several

individual fees: The fee for the instance itself depends on its performance and is

billed on a hourly basis. Table 4.1 shows the price per hour (in USD) as it was in

winter 2010 for instances running in the East region of the U.S. As the table

shows, Linux instances are 10% cheaper than their counterparts in Europe.

The sizes indicating the capacities of the instances refer to the EC2 Compute
Unit (ECU) standard, and take further properties of the virtual system into account.

An ECU is equivalent to the compute power of a 2007 AMD Opteron or Intel Xeon

CPU with a processor speed from 1.0 to 1.2 GHz.

A Small Standard On-Demand Instance corresponds to a 32-bit computer system

with a single virtual processor core (one ECU), 1.7 GB of memory, and 160 GB of

disk space. A High Memory Quadruple Extra Large On-Demand Instance, at the
high end of the scale, features a 64-bit platform with 26 ECUs (distributed to

8 virtual cores with 3.25 ECUs each), 68.4 GB of RAM, and 1,690 GB of disk

space.

The Cluster Compute Instances are 10 Gigabit Ethernet HPCaaS offerings from

Amazon with increased I/O performance. Up to now, such instances are only

Table 4.1 Pricing for Amazon EC2 on-demand instances (USD per hour)

Micro On-Demand Instance Linux/UNIX Windows

Micro t1.micro 0.02 0.03

Standard On-Demand Instance Linux/UNIX Windows

Small (Default) m1.small 0.085 0.12

Large m1.large 0.34 0.48

Extra Large m1.xlarge 0.68 0.96

High CPU On-Demand Instance Linux/UNIX Windows

Medium c1.medium 0.17 0.29

Extra Large c1.xlarge 0.68 1.16

High Memory On-Demand Instance Linux/UNIX Windows

Extra Large m2.xlarge 0.50 0.62

Double Extra Large m2.2xlarge 1.20 1.44

Quadruple Extra Large m2.4xlarge 2.40 2.88

Cluster Compute On-Demand Instance Linux/UNIX Windows

Quadruple Extra Large cc1.4xlarge 1.60 n.a.

GPU Quadruple Extra Large cg1.4xlarge 2.10 n.a.

4.1 Amazon Web Services 27

available in the US East region and under Linux. Each of them has two quad-core

Intel Xeon-X5570 Nehalem processors and 1,690 GB of disk space. Every Cluster
GPU Quadruple Extra Large Compute On-Demand Instance additionally includes

two NVIDIA Tesla-M2050 graphics processing units (GPU).

32-bit architecture systems are only used by the two m1.small and

c1.medium instance classes. All other instance classes use systems featuring a

64-bit architecture. An exception to this rule is the t1.micro instance class for

which both 32-bit and 64-bit instances can be used.

Besides the hourly operating costs paid from the time an instance is launched

until it is terminated, the data transfer (billed by volume), the cost for a permanent

elastic IP (billed by the hour), and the Elastic Block Store volume used (billed by

storage space) add to the total costs over time. Moreover, there are other chargeable

features to which the user can subscribe. In order to make it easier for the user to

estimate the potential costs – in the light of the rather complex pricing model –

Amazon provides a billing form on the AWS website which calculates the monthly

costs for a given configuration or based on a certain expected utilization profile.

Besides dynamic instances, Amazon also offers reserved instances for perma-

nent use. They can be purchased for 1 or 3 year terms with corresponding discounts.

Thus, a Small Reserved Instance in Europe costs $227.5 per year ($350 for 3 years).
Another possibility to obtain instances at a lower price are the so-called spot

instances. These refer to an auction model which enables the customers to bid for

unused EC2 capacities. The price for spot instances is variable and is adjusted

periodically by Amazon depending on the supply and demand for capacity. To bid

on spot instances, customers specify a maximum price they are willing to pay per

instance hour, further indicating the desired instance type, the region, and the

number of instances required. As long as a sufficient number of spot instances

are available at a lower price, the order will be executed and the instances will be

launched. If the spot price exceeds the given maximum price, the instances will be

terminated. As soon as the spot price falls below the given maximum price again,

the instances are re-launched automatically. The spot price is updated every 30

minutes. This offering is particularly interesting for industry and research projects

which must stick to a tight budget and do not require 24/7 uptime.

An example of how to use Amazon EC2 is shown in the appendix in Sect. 9.1.

4.1.2 Amazon Simple Storage Service (S3)

Amazon S3 is a cloud-based mass storage system with a very simple storage

structure. Stored web objects with a size of up to 5 GB are stored in so-called

buckets. Buckets cannot be nested hierarchically, but each web object can be

identified directly by its bucket name together with its object name. Consequently,

Amazon S3 is no conventional file system, although there are third-party tools

and cloud services, such as JungleDisk [100], that allow users to access storage

resources in S3 just as they do with remote hard disks.

28 4 Selected Cloud Offerings

By definition, Amazon S3 is accessed via web services using either a SOAP or

a REST API. The latter is preferable, especially if large objects are to be dealt with,

since REST usually handles them better than SOAP. As with EC2, convenient

graphical user interfaces are available for S3; these will be explained further in

Sect. 5.3. For direct access to Amazon S3 from the command line, the s3cmd tool

[121] is available; its functionality is illustrated in the appendix in Sect. 9.4.

4.1.3 Amazon Elastic Block Store (EBS)

The EBS storage service allows customers to create data stores, so-called storage

volumes, with sizes from 1 GB to 1 TB within each availability zone.

A new EBS volume behaves just like an unformatted block device. Users can

create any file system on top of the EBS volumes which can be handled like a USB

stick.

It is important to mention that an EBS volume can only be mounted to one single

instance, which, in turn, must be located in the same availability zone. An EBS

volume implements persistent storage, i.e. it preserves the data after termination of

the instance.

A usage example for Amazon EBS is shown in the appendix in Sect. 9.2.

4.1.4 Amazon Simple Queue Service (SQS)

The SQS message queue has special importance within the range of AWS cloud

offerings because it can be used effectively to scale applications. A sender (pub-

lisher) can place messages in a queue, which can then be read out and processed

by a registered recipient. To dissociate different components in an application,

a service-consuming component can place its jobs as requests in the queue from

where they are fetched by service-providing components. Skillful programming

allows to operate critical components simultaneously on multiple EC2 instances,

using the path thus defined. This way, bottlenecks existing with certain components

can be eliminated flexibly at runtime and the system’s overall performance is no

longer limited by the bottleneck. The example in Sect. 4.1.7 illustrates the resulting

system architecture.

The SQS interface provides the following services which are not usually started

by a user by entering a command, but by corresponding web service calls issued by

the associated components.

• CreateQueue: creates a queue in the AWS user context

• ListQueues: lists the existing queues

• DeleteQueue: deletes a queue

• SendMessage: places a message in a queue

4.1 Amazon Web Services 29

• ReceiveMessage: reads one (or more) messages from a queue

• ChangeMessageVisibility: explicitly sets the visibility of a read message for

other potential readers

• DeleteMessage: deletes a read message

• SetQueueAttributes: sets queue attributes, e.g., the interval between two read

operations of the same message

• GetQueueAttributes: reads queue attributes, e.g., the number of messages cur-

rently in the queue

• AddPermission: enables shared access to a queue from multiple user contexts

• RemovePermission: disables the shared access by other user contexts

4.1.5 Amazon SimpleDB

Amazon SimpleDB is not designed for complex database schemes or transactional

properties, but intended to provide simply structured, yet highly reliable data

storage which is considered to be sufficient for a wide range of applications. The

database administration and optimization tasks are thus reduced to a minimum. For

applications which depend on the performance and the comprehensive functionality

of today’s commercial relational database systems (RDBMS), Amazon RDS is the

better choice (see Sect. 4.1.6).

In line with the limited functionality of SimpleDB, its interface is also restricted

to a few simple web service calls. This should ensure both ease of learning and

a user-friendly behavior:

• CreateDomain, ListDomains, DeleteDomain: create, list or delete domains.

Domains correspond to the tables existing in relational databases. Each com-

mand can only address one single domain at a time.

• DomainMetadata: reads metadata of a domain, such as the current storage space

requirements

• PutAttributes: adds or updates a record based on a record identifier and attribute/

value pairs

• BatchPutAttributes: simultaneously triggers multiple insert operations to

increase the performance

• DeleteAttributes: deletes records, attributes, or values

• GetAttributes: reads an identified (partial) record

• Select: queries the database using an SQL-like syntax, but without being applied

to multiple domains (as with Join)

4.1.6 Amazon Relational Database Service

Amazon Relational Database Service (Amazon RDS) [45] is a PaaS that makes it

easy to set up, operate, and scale a relational database in the cloud. Similar to the

30 4 Selected Cloud Offerings

EC2 operating model, this service provides elastic capacities and at the same time

handles time-consuming database administration tasks. Thanks to automated data-

base backups and snapshots, the Amazon RDS is highly reliable: a database

instance can be recovered for any point in time or recovery point that lies within

the agreed retention period.

Amazon CloudWatch allows users to monitor the utilization of the computing

and storage capacities of their database instances and to scale the available

resources vertically using a simple API call as needed. In connection with highly

demanding applications involving many read operations, it is possible to scale out

by launching so-called Read Replica instances. A corresponding high-availability

offering allows the provisioning of synchronously replicated database instances

without additional costs in multiple availability regions as a safeguard against

failures at a single location. This way, it is possible to mask maintenance windows

as RDS switches the database services transparently between the locations.

Amazon RDS enables access to all MySQL database functions so that it is a no-

brainer to migrate existing applications while maintaining the preferred database

tools and programming languages. If an existing application already uses a MySQL

database, the data can be exported with mysqldump and then be piped directly

into Amazon RDS. For larger databases of 1 GB or more, we recommend to create

a database schema in RDS first, then convert the data into a flat file, and finally

import it into the RDS instance using the mysqlimport utility. The same method can

be used when exporting data from the database services.

Amazon RDS selects the optimum configuration parameters for database

instances, taking the relevant computing resources and storage capacity

requirements into account. However, it is also possible to change the default setting

through configuration management APIs. Since RDS is implemented as a PaaS

offering, it is not possible to set the database parameters by directly accessing the

servers through the SSH.

For the management of its database services, Amazon not only offers command

line tools and libraries for various programming languages [51], but also a conve-

nient web-based management console [53].

A usage example for Amazon RDS is shown in the appendix in Sect. 9.3.

4.1.7 The Amazon Web Services as ‘Team Players’

In the context of application development, the different AWS services can be used

either as standalone utilities or in interaction with each other. [29] exemplifies an

application which uses various AWS services to perform search requests against

millions of web documents. This application, known as GrepTheWeb, is currently
in production at Amazon.

This scenario (see Fig. 4.1) is characterized by the interaction of SQS,

SimpleDB, EC2, and S3. A number of SQS queues store both incoming requests

as well as intermediate results created when processing these requests. This

4.1 Amazon Web Services 31

decouples the processing phase from the receipt of the requests. Search requests are

formulated as regular expressions which are placed as launch messages in an initial
SQS launch queue.

For each processing step, there is a controller component (launch controller,
monitor controller, shutdown controller, billing controller) which reads data from

a queue and writes the results to the next queue. This means that the processing

steps are executed asynchronously by the respective controller and that the

controllers are independent from each other.

The controllers use SimpleDB, EC2, and S3. The former contains status infor-

mation, logs, and user data required for requests. Thus, each controller queries and

writes to SimpleDB. S3, on the other hand, holds the data to be searched (hundreds

of terabytes of Web documents) and the results from the search request. S3 is

accessed via a Hadoop cluster made of EC2 instances (see also Sect. 6.9). These are

created by the launch controller monitored by the monitor controller, and

terminated by the shutdown controller.
GrepTheWeb is an example of a modular application architecture which

provides for processing steps, decouples them using queues and controlling them

using independent controller components. All components are lightweight and

communicate in a service-oriented manner via http requests using XML (Extensible

Markup Language). This architecture illustrates how different basic services can be

Launch
Queue

Amazon SQS

Monitor
Queue

Shutdown
Queue

Launch
Controller

Monitor
Controller

Billing
Controller

Shutdown
Controller

Put File

Get File
HDFS

Master M

Shutdown

Ping

Launch

Insert JobID
Status Check for results

Get EC2 Info

Slaves N

Status
DB

Output

Input

Amazon
Simple DB

Controller

Hadoop Cluster on
Amazon EC2 Amazon S3

Shutdown

Billing
Queue

Billing
Service

Insert Amazon
EC2 Info

Fig. 4.1 AWS interaction example: GrepTheWeb (Source: Amazon)

32 4 Selected Cloud Offerings

combined when developing scalable multi-tenant systems which are able to

dynamically serve different workload situations and – above all – are tolerant, e.g.,

in the event of individual node failures.

4.2 Google Cloud Services

Like Amazon, Google offers a wide range of different cloud services. Some of them

will be presented in the next sections.

4.2.1 Google App Engine

Google App Engine [85] is a PaaS that includes a programming environment, tool

support, and an execution environment. This ‘instrumentation’ can be used to

develop web applications for the scalable Google infrastructure. Google App

Engine virtually frees web application designers from any tasks involving server

administration so that they can focus on developing the required application

functionality.

Google App Engine provides environments for the Python and Java program-

ming languages. For these languages, a local execution environment is available

where designers can test and trial their web applications during the development

phase. Once the application is ready to go live, it can be moved to the Google

infrastructure and run there. Thus, the web application benefits from the reliability

and scaling technologies employed by Google for their own final products, such as

the well-known search engine or the Google Docs online office suite. For private

testing or basic, non-commercial systems App Engine is free of charge.

Further to the usual functions included in the Java libraries anyway, the platform

gives access to a number of additional services (in the sense of cloud computing:

application services). Part of them can be addressed via the standard Java interfaces

in order to facilitate the portability and usability of the developed code even outside

the App Engine context:

• Data storage: For persistent data storage, Google App Engine uses the so-called

datastore, a schemaless, object-oriented database that includes a query engine

and guarantees atomic transactions. The datastore implements a proprietary

interface, but also the Java Data Objects (JDO) and Java Persistence API

(JPA) standard interfaces.

• Email integration: The functionality for email communication can be embedded

in Web applications using Google email accounts. This is another application

service which can be used both though a proprietary interface and a subset of the

standardized JavaMail interface.

• User management: Authentication of Web application customers is done

through Google accounts for which a proprietary interface is available. The

4.2 Google Cloud Services 33

users are redirected to the Google Accounts login page where they can enter their

account information. A basic rights management system distinguishes normal

users from administrators and thus controls the access to protected functions.

• There are more services which add to the ones mentioned above, e.g., services

for fast data caching, for linking to other web applications using HTTP(S), or for

efficient editing of images to be displayed.

Google App Engine not only supports Web application developers by providing

the local runtime environment mentioned above and the associated automation of

transfer and deployment on the Google servers. What is more, many other tools, e.g.

Google Plugin for Eclipse are available for the development of Google Web Toolkit

(GWT) applications. Even when it comes to the App Engine pricing system, Google

has the needs of potential developers in mind: each developer benefits from free

quotas for CPU load, storage use, data transfer, etc., which can be used up on a daily

basis and which are usually sufficient to run developer systems and basic web

applications. If it is predictable that more resources will be needed, they can be

purchased as an option. Prices for commercial use are comparable to those for the

Amazon Web Services.

In discussions about cloud computing, many people rightly object that major

obstacles arise from the use of proprietary technologies. With many PaaS offerings,

the code of the developed applications can only be reused to a very limited extent or

not at all. The web application provider is permanently tied to the cloud operator

and thus to their pricing and quality of service standards. For Google App Engine

however, a compatible, open source platform called AppScale [58] has emerged

which provides the ability to migrate Web applications to an EC2-compatible

public or private cloud IaaS (see also Chaps. 6 and 9). The project, which was

started at the University of California in Santa Barbara, meanwhile is actively

supported by Google themselves.

Another free re-implementation of Google App Engine is TyphoonAE. It

enables the use of App Engine applications in any Linux environment as well as

under Mac OS X.

4.2.2 Google Storage

Google Storage [92] is a storage service which allows to store web objects in

Google’s data centers. As with Amazon S3, service access is based on the REST

model.

Google Storage provides the same functionality as Amazon S3: objects are

placed in buckets and a single bucket cannot contain nested buckets. Users can

define the access to their own objects and buckets based on an access control list.

The GSUtil [94] command line tool offered by Google supports both Google

Storage and Amazon S3. With GSUtil, users can create their own buckets, upload

objects, and set access rights using a browser.

34 4 Selected Cloud Offerings

Currently (i.e. in November 2010), the service is still under development and can

only be accessed by developers in the U.S.

Storing one GB of data is charged at $0.17 per month. Uploads cost $0.10 per

GB and downloads range between $0.15 and $0.30 per GB (depending on the

region). For 1,000 PUT, POST, and LIST requests, Google charges $0.01. The

same rate applies to 10,000 GET and HEAD requests.

4.2.3 Google Cloud Print

Google Cloud Print [87] is another interesting cloud computing concept. This

service allows any application to print to any output device on the Internet.

Especially users of mobile end devices might greatly benefit from this option.

While modern Internet-enabled devices, such as notebooks, touchpads, and mobile

phones, are becoming more and more widespread, it is often difficult or even

impossible to set up a local printer that can be used by these devices. The lack of

suitable printer drivers, the partly insufficient devices resources and the variety of

operating systems in use add to this issue.

With Google Cloud Print, print jobs are sent to a service which directly forwards

them to a Cloud Print-compatible network printer; for this purpose, a special

authorization or accounting procedure is used. As long as a printer is connected

to the Internet, the service can be set up for worldwide use. If the printer is

incompatible with the Cloud Print technology, it must be connected to a server

where a suitable proxy is installed. In this case, the print job data is first converted to

a compatible printer language. For this purpose, the required set of printer drivers is

made available by the Cloud Print provider. Then, the print job is transmitted to the

server which finally forwards the preprocessed print jobs to the selected printer.

Google Cloud Print represents an unconstrained standard which can be

implemented freely by the industry. Many manufacturers, such as HP, meanwhile

offer a number of low-priced, compatible printers.

This development has the potential to allow a broad range of service offerings to

spread around this technology, including services which go far beyond the simple

replacement of centralized print job management in companies and universities. In

the future, university students will have the possibility for example to directly

upload their lecture notes from their touchpad to a print provider’s site to have

them printed and bound. Due to economies of scale, the provider is able to offer this

service at a very good price, including free delivery. The standardized interface

provides the ability to greatly automate and streamline certain tasks, particularly the

cross-company processing of bulk mail, quality prints, etc. What is more, a new

distribution model for publishing houses is beginning to materialize: The installa-

tion of machines in the public on which – controlled by a mobile device – electronic

magazines, newspapers, or books can be printed on the spot.

4.2 Google Cloud Services 35

4.3 Windows Azure

Windows Azure [59] is Microsoft’s cloud computing platform for the execution of

software in Microsoft’s data centers. Microsoft operates the platform and provides

resources with a guaranteed availability of 99.9% on redundant systems.

The Windows Azure platform comprises a compute service for running

applications, a storage service for storing data, and an SQL service for providing

highly available relational databases in the cloud. The storage service can be used to

store large objects containing text or binary data. Based on this service, Windows

Azure Drive allows to format a binary data object to be used as an NTFS volume.

A queue service ensures a reliable data exchange between the components.

Finally, the virtual network service constitutes the basis for a transparent commu-

nication between local and remote resources. It can be used to integrate Windows

Azure services into a local Active Directory.

In addition, the platform includes the Windows Azure AppFabric which uses

secure connectivity to bridge traditional IT systems to cloud applications. With the

Azure Service Platform, software products can be installed as cloud services on the

Internet, or alternatively as applications in the in-house data center. The two

methods can also be combined to implement a flexibly scalable hybrid cloud. For

this purpose, web and business developers have the choice of a variety of established

tools, such as Microsoft .NET, Visual Studio, or many other products which are

available as commercial or open source software. Applications can be developed and

tested locally before they are finally uploaded and published to the Azure cloud.

For the use of Windows Azure services, three different roles have been defined:

• The Web role supports the development and execution of web applications with

Internet Information Server 7

• The Worker role provides supporting services to the Web role, e.g., in multi-tier

applications

• The VM role allows the execution of a virtual machine on Windows Server 2008

R2. The image is stored on a virtual hard disk in the Azure storage service. This

role further provides functionality for granting privileges and using Remote

Desktop connections.

The usage-oriented Windows Azure pricing model is based on what is actually

used so that IT solutions can be deployed without up-front investment in hardware

and software and more compute power can be added later as required. Pricing is in

line with Amazon’s or Google’s model (see Table 4.2).

Table 4.2 Fees for Windows azure compute instances (USD per hour)

Instance type CPU (GHz) Memory Disk (GB) I/O Costs

Extra small 1.0 768 MB 20 Low 0.05

Small 1.6 1.75 GB 225 Moderate 0.12

Medium 2 � 1.6 3.5 GB 490 High 0.24

Large 4 � 1.6 7 GB 1,000 High 0.48

Extra large 8 � 1.6 14 GB 2,040 High 0.96

36 4 Selected Cloud Offerings

4.4 Salesforce.com

Salesforce.com [125] is a leading cloud provider for customer relationship man-

agement (CRM) software. In the sense of Chap. 3, Salesforce.com is an SaaS

offering which has been complemented by a PaaS offering where independent

third parties can develop and offer add-on software. The Salesforce.com portfolio

consists of four major parts:

• The central part is a CRM SaaS offering called Salesforce. It provides a web-

based solution for sales, marketing, customer service, partner management, and

others. The central component is available in several bundles that reflect differ-

ent capabilities and numbers of users; it is usually paid for on a monthly or

yearly basis. As a classic SaaS offering, this multi-tenant application runs on the

Salesforce.com servers and does not have to be installed locally.

• Force.com [78] is the name of a PaaS offering which allows customers or

independent software vendors (ISVs) to develop their own web-based business

applications and run them on the salesforce.com infrastructure. For more tech-

nical details on Force.com, see below.

• The business applications developed on Force.com can be obtained on the

AppExchange [56] marketplace: the choice includes free and paid apps. Via Force.

com, the applications are pre-integrated with the Salesforce.com CRM, and their

functionality often complements the latter or is fine-tuned for particular industries.

• Both Force.com and Salesforce.com are accompanied by organized user

communities named DeveloperForce [67] and Salesforce.com Community

[124], which provide both user networking and professional consulting services

offered by Salesforce.com and their partners.

The Force.com platform includes development tools and a programming envi-

ronment suitable for example to develop the logic of an application in Apex,

a programming language with a Java-like syntax. Other features are the support

of user interface development with Visualforce, the integration of software testing

procedures, or the connection of external Web services through a dedicated API.

For the development of custom web applications, a programming model with

a highly data-centric approach is used: The development of an application usually

starts with the creation of an object model which will later hold the application data.

For the data elements, constraints can be defined which improve the data quality.

Just like workflows and acceptance processes, these two initial steps can be defined

directly from within the development environment, using the available data. Use of

the Apex programming language is only required if a more complex application

logic must be implemented. The developer tools are not only helpful in the essential

steps mentioned above required to meet functional and non-functional

requirements, but also in the context of the organizational workflows which are

necessary to pack the developed application and deploy it as an offering to potential

customers. Developers who wish to learn how to write programs on Force.com can

obtain comprehensive material in the form of tutorials, manuals, reference

documents, and code samples on the web-based community portals.

4.4 Salesforce.com 37

4.5 Cloud Gaming

The term ‘cloud gaming’ encompasses all offerings which provide the ability to

play high-end video games on low-end devices, such as TV sets or computers with

a low compute power, but also on mobile end devices, such as touchpads and

mobile phones. With the recent introduction of 3-D TV sets, even a platform for

3-D games is now available.

The video games played in cloud gaming run on the provider’s powerful server

farms. The only function of the target device is to display the game content which is

transmitted as a compressed video stream. User input is sent to the provider and

evaluated there. A prerequisite for cloud gaming is the availability of a broadband

Internet connection with low latency to ensure short response times and make sure

the flow of the game is not interrupted. A benefit of a centralized gaming system

located on the provider’s servers is that it facilitates a faster interaction between the

players in multi-user online games. The necessary compression, however, results in

visualization trade-offs.

Cloud gaming customers benefit from the fact that they neither have to buy

a gaming console nor a powerful computer nor the desired games. Instead, they pay

a certain amount for the time they play the game. The game manufacturers, on the

other hand, enjoy the beneficial side effect that with cloud gaming, they no longer

have to deal with the problem of pirated copies. Popular providers of cloud gaming

services are OnLive [110], Gaikai [79], and Otoy [118].

4.6 Cloud Operating Systems

The so-called web desktops which are on offer today are also called cloud operating

systems. A popular product from this group is eyeOS [71], an open source solution.

The operating system including the installed applications and the user data runs on

the provider’s server farms. All the user needs is an end device with Internet access

and a standard-compliant browser.

Even though products such as eyeOS are named ‘cloud operating systems’, this

term is misleading in most cases. In fact, if users want to use a cloud operating

system, they need a computer where a browser and an underlying operating system

are installed. This means that the local operating system is in no way replaced, but

rather complemented. Only the user applications and data are transferred to the

cloud.

Google Chrome OS [86] is another offering from the class of cloud operating

systems: A Chrome browser suitable for the efficient use of all Google web

applications runs on a boiled-down Linux operating system. Its low resource

requirements enable Chrome OS to run even on the smallest netbooks, the so-called

nettops.

38 4 Selected Cloud Offerings

Chapter 5

Cloud Management

Setting up appropriate management procedures is vital both for operators and for

users of cloud services. Services must be described, provisioned, and billed. In

order to achieve the required service scalability and reliability, automated processes

are employed. When services are transferred from the local context into the public

cloud, security issues and risk assessment play an important role. This chapter deals

with the related cloud management aspects.

5.1 Service Level Agreements (SLAs)

A service level agreement is an agreement between a service provider and a service

consumer related to the service level (quality of service). Such an agreement can be

reached by signing a formal and legally binding contract, or informally in case of

different departments of a company using the services. This is referred to as an

operation level agreement (OLA). In terms of quality, the SLA implies a mutual

agreement with respect to security, priorities, responsibilities, guarantees, and

billing modalities. In addition, the SLA specifies metrics such as availability,

throughput, response times, and others. By nature, SLAs always consider the output

side, i.e. they are drafted from the service consumer’s perspective. A provider can

stand out by delivering a service in a superior quality or in a particularly innovative

way. From the business perspective, it is possible to agree on different quality

levels, e.g. Basic, Silver, Gold, Platinum.

Cloud computing SLAs are interesting when it comes to controlling resource

allocation and dynamic resource usage. There are two phases which are essential

for service level management:

• Agreement on the quality of service

• Service monitoring at runtime

C. Baun et al., Cloud Computing, DOI 10.1007/978-3-642-20917-8_5,
Springer-Verlag Berlin Heidelberg 2011

39

With the current cloud offerings, agreeing and monitoring specific SLAs is only

possible in a very basic way, and these offerings are usually made on a best effort
basis. In case of failures or service disruptions, the provider issues a corresponding

credit note.

With respect to the cloud architecture, developers are called upon to insert

a layer into the cloud stack on which both aspects, i.e. service agreement and

service monitoring, will be dealt with. SLA@SOI [128] is a project supported by

the European Commission in the EU Seventh Framework Programme. It examines

the aspects of multi-level SLAs in a market with competing offerings.

5.2 Lifecycle and Automation

Each cloud service goes through a well-defined lifecycle: The service provider

defines the scope and quality of the services and describes their properties in a

service catalog. The consumers select the desired services from the catalog and

instantiate them as required, while SLAs need to be taken into account and

monitored. At the end of the utilization period, service orders are closed, service

modules are dissociated and resources are reset. An accounting procedure adds up

the usage of all resources. Thus, it is possible to track the current status in a fine-

grained and time-resolved manner. The consumers are billed either periodically or

each time the costs incurred exceed a certain threshold. Most billing procedures use

credit cards, while some providers, such as Zimory, also accept direct debiting or

invoicing [141].

Services are often provisioned as so-called ensembles. An ensemble is a group of

similar resources which are managed in a fully automatic way. This approach

facilitates the scalable provisioning of services with a nearly constant management

overhead. In this context, automation includes the following steps:

1. Monitoring

2. Analysis

3. Scheduling

4. Execution

A suitable monitoring procedure constantly checks the quality of service and

an analysis component examines and evaluates the monitoring component output.

In case of malfunctions or deviations from the agreed performance parameters, an

appropriate troubleshooting process is selected from a previously defined portfolio

(scheduling). The executing unit finally implements the process by providing

additional resources, e.g. for an application or a request. The associated

components form a closed loop which is cycled through. Process automation is

an essential feature of nearly all cloud architectures because it allows for dynamic

scalability and fault tolerance.

40 5 Cloud Management

5.3 Management Services and Tools

For the management of their services, cloud providers offer a broad range of tools

(see Table 5.1). Some are command line-based, others can be accessed from Web

portals. From the virtually innumerable number of solutions, we selected some

exemplary tools for different areas of application which will be presented below.

5.3.1 Monitoring

Periodic acquisition of performance data is important both to the cloud provider and

to the cloud consumer who wants to judge the quality of service. CloudClimate, for

example, gathers performance data of different cloud service providers and

publishes them on a website [63], including performance metrics such as CPU,

memory usage and hard disk access. These values are displayed in charts for the

past month. This not only enables the users to directly compare the performance of

different providers, but in addition, malfunctions and periods with unusually high

loads can be identified.

Amazon CloudWatch is a special Web service that monitors the Amazon Web

Services [37] performance. CloudWatch allows to view resource usage and displays

the current performance data as well as access patterns. This service collects data on

CPU usage, disk access, and network traffic. To enable CloudWatch, the user

allocates this service to an EC2 instance. The resulting monitoring data can be

processed using either the Web service API or command line procedures.

5.3.2 Control

To support the management of its infrastructure services, Amazon not only offers a

set of command line tools and libraries for various programming languages [51],

but also a convenient Web-based management console [53] (see Fig. 5.1).

With this console, the following services can be controlled and monitored:

Amazon S3, Amazon EC2, Amazon Virtual Private Cloud, Amazon Elastic

MapReduce, Amazon CloudFront, Amazon Relational Database Service, and Ama-

zon Simple Notification Service. This includes the following EC2 operations:

• Instances: Start, stop, restart, remove, access the console, view log files

• Images: Start, register, delete, define access rights

• Memory: Create, delete, allocate, release, take snapshots

• Network: Manage IP addresses

• Structure: Manage placement groups and load distribution

• Security: Manage security groups and keys

5.3 Management Services and Tools 41

These management operations can be performed separately for the different

availability zones. Besides the official EC2 command line tools from Amazon,

there are a number of freely available tools that can be used to interact with AWS-

compatible cloud services, such as s3cmd [121] and the Euca2ools from Eucalyptus.

An alternative graphical console is available as an open source plug-in for the

Firefox browser: ElasticFox organizes infrastructure management in a similar way

[72]. An advantage of ElasticFox is that it allows to manage not only EC2-based

public clouds, but also Eucalyptus-based private clouds. A screenshot of the

ElasticFox console is shown in Fig. 5.2.

There are multiple solutions which are targeted at using the Amazon S3 storage

service. The Firefox S3Fox Organizer plug-in is of particular interest [122].

With this tool, a customer can

• Upload, download, delete, or hierarchically organize files,

• Control the visibility of data on the Internet (also temporarily),

• Manage access rights (especially set up access control lists), and

• Automatically synchronize local folders with S3.

The user interface is similar to a traditional FTP client (see Fig. 5.3). It contains

two views showing the local and the cloud file structures side-by-side; files can be

copied by simple drag-and-drop.

The existing tools for working with cloud services belong to one of the following

three basic categories:

• Online tools (services)

• Browser plug-ins

• Command line tools

Fig. 5.1 Managing infrastructure with the AWS console

42 5 Cloud Management

The online tools, which are typically implemented as services, include tools such

as the AWS Management Console [53] and a corresponding offering from Ylastic

[139]. A drawback of these solutions is that customers must trust the tool provider

with respect to data privacy and data security because the access data will always be

stored with the provider. In addition, the AWS Management Console will only

work with services that are part of Amazon Web Services. This means that private

cloud services are excluded. Currently, Ylastic only supports Amazon Web

Services and infrastructure services based on Eucalyptus.

While browser plug-ins, such as ElasticFox and Hybridfox, boast many

functions, they require a local installation and thus involve a certain maintenance

Fig. 5.3 S3Fox organizer for storage services

Fig. 5.2 Infrastructure management with ElasticFox

5.3 Management Services and Tools 43

effort. Each time a service provider switches to a new version, there is a certain risk

of interface incompatibilities. What is more, the plug-ins cannot be used with

alternative products, such as Chrome, Opera, Safari, Internet Explorer, etc.

Command line tools, such as the EC2 API Tools from Amazon and the

Euca2ools from Eucalyptus, also require local installation. Since they have no

graphical interface, they are less user-friendly. Just like the other Amazon tools,

the EC2 API Tools only work with the AWS public cloud services. The Euca2ools

are able to interact with public and private cloud services that are compatible with

Amazon Web Services.

KOALA [101, 102] is a new solution for controlling cloud services, which

overcomes the limitations of the existing tools. It is a software service capable of

controlling public and private cloud infrastructures compatible with AWS

interfaces (see Fig. 5.4). Cloud services from Amazon, Eucalyptus, Nimbus, and

OpenNebula as well as the management of Google Storage are supported. The

service itself can be operated in Google App Engine or alternatively in a compatible

private cloud (AppScale and TyphoonAE). KOALA has been published under an

open source license (Table 5.1).

Fig. 5.4 KOALA cloud manager

Table 5.1 Cloud management tools

Name Provider Design License Costs EC2 S3 EBS ELB Requirements

KOALA [101] KIT SaaS Apache v2.0 Free Yes Yes Yes Yes Browser

AWS console [53] Amazon SaaS proprietary Free Yes Yes Yes Yes Browser

Ylastic [139] Ylastic SaaS proprietary $25/month Yes Yes Yes Yes Browser

ElasticFox [72] Amazon Plug-in Apache v2.0 Free Yes No Yes No Firefox

S3Fox [122] Suchi Plug-in proprietary Free No Yes No No Firefox

Euca2ools [74] Eucalyptus Shell BSD Free Yes No Yes No Installation

API tools [50] Amazon Shell Apache v2.0 Free Yes No Yes Yes Installation

GSUtil [94] Google Shell Apache v2.0 Free No Yes No No Installation

s3cmd [121] M. Ludvig Shell GPLv2 Free No Yes No No Installation

AWS toolkit [54] Amazon Eclipse Apache v2.0 Free Yes No No No Eclipse

44 5 Cloud Management

5.3.3 Development

In a mainly service-oriented landscape, operation and development are often

closely intertwined, so that besides the management tools, development tools

play an important role. Let us take Eclipse [70] as an example of an integrated

cloud development and management environment. Eclipse is a very popular appli-

cation development platform for which a wealth of plug-ins exist, accommodating

the most diverse programming environments. The gEclipse project, for example,

features a comprehensive graphical interface for users, developers, and operators of

grid and cloud infrastructures [81]. There are also specific Amazon Web Services

extensions, such as the AWS Eclipse ToolKit [54] which enables developers to

develop and test distributed and scalable Java applications based on Tomcat

containers for Amazon EC2 (see Fig. 5.5). Tools for managing security groups,

AMI libraries, EC2 instances, and EBS memory are included as well.

With its Google Web Toolkit (GWT), Google provides another way to support

cloud application development. Google Web Toolkit is an SDK for the develop-

ment of Java or Python programs to be run on the App Engine platform [84].

Besides the GWT, this development environment also includes a local Web server

for testing the programs. Once developers are happy with the way an application

works, they can package it into a so-called WAR file for upload to the scalable

Google infrastructure. As an extension of the SDK, there is also a Google plug-in

for Eclipse targeted at the interactive development of GWT applications in a graphical,

integrated development environment [91].

With a simple click on the App Engine button, locally developed programs can

be published to the Google infrastructure (see Fig. 5.6).

Fig. 5.5 Amazon web service plug-in for eclipse

5.3 Management Services and Tools 45

5.4 Security Management

Security is not only related to safely accessing resources, but also covers data

privacy issues. A study by Berkeley University researchers shows that, for the so-

called cloud sourcing, no specific challenges or problems exist that would require

measures other than those currently implemented [1]. With respect to security, the

same safety objectives apply as those common to the operation of services in a local

data center [28]:

• Confidentiality

• Integrity

• Availability

• Authenticity

• Accountability

• Pseudonymity

Compliance with these safety objectives has to be considered as an integral part

of the SLA negotiated between the service provider and the service consumer. The

Zimory cloud marketplace, for example, allows to define SLAs with customized

security requirements for cloud services [141].

Due to the openness of this approach, the various categories of cloud services

have different characteristics:

• IaaS: Highest flexibility, the customer is responsible for security

• PaaS: Medium flexibility, both the customer and the provider are responsible for

security

• SaaS: Lowest flexibility, the provider is responsible for security

Fig. 5.6 Google app engine plug-in for eclipse

46 5 Cloud Management

Many providers simply identify customers by their credit card number.

This also ensures a smooth billing process. Keys or PKI-based processes usually

allow controlled resource access and thus prevent unauthorized use. To guarantee

the desired confidentiality, data encryption is used for transmission and storage. In

this context, it is worth noting that storing encrypted data in the cloud may in some

cases be safer than storing unencrypted data on a local PC or in a company data

center. In addition, some providers use auditing processes to record all activities

related to the use of their resources. This kind of monitoring enables the providers

to comply even with the strictest legal provisions.

To guarantee information security, a certification according to ISO/IEC 27001 – or

SAS 70 in the U.S. – is of great importance. Here, the processes required to establish

and monitor security are stipulated in a binding manner. High-profile providers, such

as Amazon or Microsoft, have undergone this certification for their resource centers

and can thus offer a higher security standard than smaller company data centers.

There are scenarios where outsourcing of tasks into the cloud is indeed advanta-

geous with respect to security issues: For a company intending to collaborate with

external partners in a common project, the firewalls of the partner companies often

become almost insurmountable obstacles to establishing common processes. If

these processes, however, are transferred, e.g. to the Amazon cloud, it is possible

for the cloud provider to autonomously adjust the firewall access rules in such a way

that all project partners can collaborate smoothly and without compromising the

security guidelines of the participating companies.

For more information on this topic, we refer to the comprehensive compendium

on cloud security published by the Cloud Security Alliance [66].

5.5 Risk Management

With respect to risk assessment, cloud sourcing is hardly different from the classical

“cloud-less” situation: When data has been transferred to the cloud, there is always

a risk that access might no longer be available in case of a service disruption or

bankruptcy of the provider. These issues, however, are basically the same as with any

outsourcing process and can be handled by concluding suitable contracts or SLAs. To

mitigate this problem, it is possible to call upon a second, independent cloud service

provider as a backup solution to store copies of all business-critical data.

A further risk is the dependency on the proprietary technology and interfaces of

a certain provider (vendor lock-in): This dependency problem is a minor one with

IaaS and a major one with PaaS and SaaS: When developing a service, e.g. on top of

Google App Engine, the developer is locked to the Google-specific infrastructure,

and a platform change can be rather complex, time-consuming, and costly. In this

context, it should be noted that similar dependencies on software manufactures,

platforms, and infrastructures also exist when services are operated in a local data

center. Conventional knowledge will therefore help to solve this problem:

5.5 Risk Management 47

• If possible, standardized processes should have priority over a proprietary

solution.

• Software should be developed in a way to ensure the highest possible indepen-

dence from a single platform.

• If dependencies are inevitable, proper encapsulation should be ensured for

maximum flexibility.

For an evaluation of the opportunities and risks of cloud computing, see Chap. 8.

5.6 Legal Compliance

Neither cloud service offerings nor their use may infringe laws, social values,

morals, or ethics. This is ensured by the concept of compliance. According to

established case-law, the same laws are applicable to cloud computing as to renting

(in case of paid services) or lending (with respect to unpaid services).

The geographical location of the cloud provider is decisive in the determination

of the laws that will apply to the data stored. The data may have been replicated so

that they exist in different places in the world at the same time and therefore might

be subject to different data privacy laws: According to article 4 of the European

Data Protection Directive, the pertaining national data protection legislation of the

respective country is applicable [138]. For this reason, Amazon, for example, offers

cloud services for different regions, such as the U.S., Europe, or Asia. Thus, it is

possible, to specify the appropriate judicial area for the services by selecting the

desired zone.

In this context, the legal aspects related to personal data processing deserve extra

attention. Country-specific laws cover this topic in each country, and for the EU,

directive 2000/31/EC is applicable. If data processing takes place outside of

Europe, the customer should make sure that an appropriate data protection level

exists (e.g. Safe Harbor Agreement in the U.S.). If international resources are

involved in the commissioned processing of personal data in the cloud, the consent

of the person concerned must always be obtained. From a legal point of view, this

kind of data processing is still permitted, though, as soon as the personal character

of the data is removed by measures such as encryption or anonymization.

For industries such as healthcare and finance explicit regulations regarding data

protection exist such as the Health Insurance Portability and Accountability Act

(HIPPA) or the Payment Card Industry Data Security Standard (PCI DSS) [130].

48 5 Cloud Management

Chapter 6

Open Source Cloud Stack

This chapter explains how to build a cloud system based on open source

components. A number of solutions suitable for creating a cloud architecture are

already available. Thus, it is possible to design an open source cloud stack, as

shown in Fig. 6.1.

The design not only includes components for building the hardware and software

infrastructure, but also components for establishing application environments.

The stack shown here is a specific variant of the cloud architecture represented in

Chap. 3: The IaaS components introduced there are represented by the physical

resource sets (PRS) which are used to partition the infrastructure, while the software

infrastructure includes virtual machine and memory management components as

well as procedures for monitoring and controlling the infrastructure. In addition,

this layer in the stack comprises job control and accounting and billing components.

The PaaS components form the framework layer, the SaaS components can be

found on the application layer. In the following sections, we will present some of

the design components by way of example.

6.1 Physical and Virtual Resources

The roots of the IaaS components lie in the Emulab project [16] where miniature

data centers are made available for system development purposes. On the bottom

layer, the infrastructure is organized in the form of physical resource sets (PRS).

Each PRS comprises the resources (e.g. CPU, memory, networks) required for the

implementation of a task. They are linked by a virtual LAN in a common domain.

For domain management, a special PRS service is used which manages the

resources over the network and allows to switch components on or off, roll out

system images, and monitor the infrastructure. Figure 6.2 shows an example with

four different domains:

C. Baun et al., Cloud Computing, DOI 10.1007/978-3-642-20917-8_6,
Springer-Verlag Berlin Heidelberg 2011

49

Here, we find one domain for systems research, one for managing virtual

machines, and further domains for storage services and monitoring. These services

are consumed by applications which run on virtual clusters of the second domain.

The virtual clusters form virtual resource sets (VRS). In the example of Fig. 6.2,

this is the Tashi management suite which is being developed jointly by Intel

and Yahoo!. Tashi is a solution especially targeted at cloud data centers which

Fig. 6.1 OpenCirrus open source cloud stack

NFS/HDFS
storage services

Workload monitoring and
trace collection services

Tash

PRS service

Virtual clusterVirtual cluster

Applications

Services

System research

Fig. 6.2 Different domains associated with a physical resource set

50 6 Open Source Cloud Stack

have to process enormous data sets on the Internet. The seminal idea is that not only

the CPU resources are subject to a scheduling process, but also the distributed

storage resources. By scheduling CPU and data storage systems together, it is

possible to optimize the system performance while keeping an eye on energy

consumption [129].

Another very popular virtual resource management system is Eucalyptus which

will be described below.

6.2 Eucalyptus

Cloud infrastructures from commercial providers, such as Amazon EC2, and S3,

and PaaS offerings, such as Google App Engine, boast a high degree of usability

and can be used at low cost (or even for free). In some cases, however, it is desirable

to build a private cloud infrastructure. Situations where a private cloud would be

preferred over a public cloud might be characterized by special security

requirements or the need to store critical company data. It is also conceivable to

set up an internal data mirror (RAID-0) in order to increase the availability of

a commercial provider’s cloud infrastructure.

Eucalyptus [74] is short for Elastic Utility Computing Architecture for Linking
Your Programs To Useful Systems, and it was initially developed at the University

of California in Santa Barbara (UCSB). Eucalyptus Systems has taken over the

activities for further development of this system. Eucalyptus allows to set up and

operate an independent IaaS cloud infrastructure. The Eucalyptus API is compati-

ble with Amazon EC2, S3, and EBS [22]. For software development, a BSD license

is used, i.e. it is open-sourced. Unlike Amazon EC2, which exclusively uses Xen for

virtualization, Eucalyptus can co-operate with Xen und KVM (Kernel-based Vir-

tual Machine). A prerequisite for using KVM is a CPU that supports hardware

virtualization, i.e. AMD-V (Pacifica) or Intel VT-x (Vanderpool). The commer-

cially available Enterprise Version offered by Eucalyptus Systems supports

VMware vSphere/ESX/ESXi. It is not planned to integrate VMware support into

the free Eucalyptus version.

6.2.1 Architecture and Components

As shown in Fig. 6.3, the Eucalyptus infrastructure consists of three components:

the Cloud Controller (CLC), the Cluster Controller (CC), and the Node Controller

(NC) [23]. All three components are implemented as Web services.

The NC must be installed on every node in the cloud where virtual instances

should run. This, however, requires a functional Xen Hypervisor or KVM. Each NC

sends information on the current state of its own resources to the CC, i.e. the

number of virtual processors, free RAM and free disk space.

6.2 Eucalyptus 51

In each cluster, a CC performs the load-dependent distribution (i.e. scheduling)

of the virtual machines to the NCs. For this purpose, the CC uses the resource

information it receives from the NCs. Another task of a CC is to control the private

network it uses to communicate with the NCs. Each CC sends information on the

current state of the resources in its own cluster.

The CLC is responsible for meta-scheduling, i.e. the way how virtual machines

are distributed between the connected clusters. For this purpose, it collects resource

information submitted by the CCs. In each Eucalyptus infrastructure, exactly one

CLC must be active. The CLC is the access point in the cloud, both for users and for

administrators.

In Eucalyptus infrastructures with a small number of physical servers, it is

a good idea to consolidate the CLC and the CC on a single server. If need be, all

three components may be operated together on a physical server.

Eucalyptus further includes two storage services: Walrus is a storage service

for Web objects compatible with the Amazon S3 REST API. In addition, there is

a storage service called Storage Controller (SC) whose functionality and API are

identical to the Amazon EBS service. Walrus and SC can be run on any computer in

the cluster. In small and medium installations, Walrus and SC are usually located on

the CLC.

Eucalyptus uses Walrus to store the images. But it is also possible to install and

use Walrus as a standalone service, independently from Eucalyptus.

Virtual Distributed Ethernet (VDE) is used to create the private network. For this

purpose, virtual VDE switches run on the individual Eucalyptus components. The

Fig. 6.3 Eucalyptus architecture and components

52 6 Open Source Cloud Stack

switches are linked by virtual VDE cables. The virtual network ensures that

a homogeneous subnet is available to the virtual machines within a cloud cluster [3].

In a Eucalyptus private cloud, the instance class identifiers are the same as with

Amazon EC2. They differ, however, by the resources which are allocated to them

by default, as shown in Tables 6.1 and 6.2. While the resource allocation for the

respective instance classes within a Eucalyptus private cloud can be configured,

there is no way to define additional or rename existing instance classes.

The new Amazon Web Services instance classes (which include the m2.
xlarge, m2.2xlarge, and m2.4xlarge high-memory instances and the

t1.micro micro instances) have not yet been introduced in Eucalyptus.

In a Eucalyptus cloud, all instance classes can be placed on all nodes. Thus, it is

not possible to differentiate the instance classes by architectures as with Amazon

EC2. In EC2, the m1.small and c1.medium instance classes are exclusively

available to instances with a 32-bit architecture, while all other instances are based

on the 64-bit architecture. An exception to this is the t1.micro instance class

which can be used for 32-bit and for 64-bit instances. In a Eucalyptus cloud, in

contrast, all instance classes have the same architecture.

Table 6.1 Computing power comparison of the Eucalyptus and Amazon EC2 instance classes

Category Eucalyptus Amazon EC2

t1.micro n/a 1 virtual core with 2 ECUs max.

m1.small 1 virtual CPU 1 virtual core with 1 ECU

m1.large 2 virtual CPUs 2 virtual cores with 2 ECUs each ⇨ 4 ECUs

m1.xlarge 2 virtual CPUs 4 virtual cores with 2 ECUs each ⇨ 8 ECUs

m2.xlarge n/a 2 virtual cores with 3.25 ECUs each ⇨ 6.5 ECUs

m2.2xlarge n/a 4 virtual cores with 3.25 ECUs each ⇨ 13 ECUs

m2.4xlarge n/a 8 virtual cores with 3.25 ECUs each ⇨ 26 ECUs

c1.medium 1 virtual CPU 2 virtual cores with 2.5 ECUs each ⇨ 5 ECUs

c1.xlarge 4 virtual CPUs 8 virtual cores with 2.5 ECUs each ⇨ 20 ECUs

cc1.4xlarge n/a 8 Intel Xeon Nehalem cores ⇨ 33.5 ECUs

cg1.4xlarge n/a 8 Intel Xeon Nehalem cores ⇨ 33.5 ECUs

Table 6.2 RAM comparison

of the Eucalyptus and

Amazon EC2 instance classes

Category Eucalyptus Amazon EC2

t1.micro – 613 MB RAM

m1.small 128 MB RAM 1.7 GB RAM

m1.large 512 MB RAM 7.5 GB RAM

m1.xlarge 1 GB RAM 15 GB RAM

m2.xlarge – 17.1 GB RAM

m2.2xlarge – 34.2 GB RAM

m2.4xlarge – 68.4 GB RAM

c1.medium 256 MB RAM 1.7 GB RAM

c1.xlarge 2 GB RAM 7 GB RAM

cc1.4xlarge – 23 GB RAM

cg1.4xlarge – 22 GB RAM

6.2 Eucalyptus 53

A further difference between Amazon Web Services and Eucalyptus lies in the

performance of the CPU cores offered. For the definition of its computing power,

Amazon uses the EC2 Compute Units (ECU) metric. With respect to computing

power, an EC2 Compute Unit is equivalent to a 1.0–1.2 GHz Opteron or Xeon

processor from 2007 or a 1.7 GHz Xeon processor from spring 2006 [42].

The virtual CPU cores in Amazon Web Services feature different performances

which depend on the instance class they are assigned to. The reason is that Amazon

has discrete physical hardware available for provisioning in the different instance

classes. While in the EC2 m1.small instance class, the computing power of a

virtual CPU core corresponds to one EC2 compute unit, each virtual core has a

computing power of two EC2 compute units in the other standard instances, i.e.

m1.small and m1.large. In the m2.xlarge, m2.2xlarge, and

m2.4xlarge high-memory instances, each virtual core has a computing power

of 3.25 EC2 compute units, and in the c1.medium and c1.xlarge high CPU

instances, a computing power of 2.5 EC2 compute units. The cluster compute

instances are equipped with two quad-core Intel Xeon-X5570 Nehalem processors

each.

6.3 OpenNebula

Just like Eucalyptus, OpenNebula [114] is an IaaS solution for building private

clouds. OpenNebula supports the Xen Hypervisor, KVM, and VMware vSphere

virtualization approaches. Unlike Eucalyptus, OpenNebula allows to move running

instances between the connected nodes. To date, however, OpenNebula only

provides basic support for the EC2 SOAP and EC2 Query APIs. It is possible to

retrieve a list of images and instances and to start, restart, and stop instances. In

addition, OpenNebula can be used to control Amazon EC2 resources.

A cutting-edge feature of OpenNebula is its node grouping capability, so that it

enables High Performance Computing as a Service (HPCaaS).

Contrary to Eucalyptus and Nimbus, OpenNebula does not include a storage

service which is compatible with the S3 or EBS API. OpenNebula is available

under an open source license.

6.4 Nimbus

Nimbus [17] is a private cloud IaaS solution developed by the Globus Alliance.

Nimbus supports the Xen Hypervisor and KVM virtualization solutions. For virtual

machine scheduling, Nimbus can rely on systems such as Portable Batch System

(PBS) or Sun Grid Engine (SGE). Nimbus features basic support for the EC2 SOAP

and EC2 Query APIs that allows users to retrieve a list of images and instances. It is

possible to start, restart, and stop instances and to create key pairs. Amazon Web

Services resources can be addressed via a back-end.

54 6 Open Source Cloud Stack

Version 2.5 and higher of Nimbus include the Cumulus storage service whose

interface is compatible with the S3 REST API. Nimbus uses Cumulus to store the

images. Cumulus may be installed and operated as a standalone service without

Nimbus. Nimbus does not feature an EBS-compatible storage service. It is available

under an open source license.

6.5 CloudStack

Another private cloud IaaS solution is CloudStack [65], jointly developed by Cloud.

com and Rackspace. CloudStack supports the Xen Hypervisor, KVM, and VMware

vSphere virtualization approaches. The architecture comprises two components:

the Management Server and the Compute Nodes. The Management Server features

a Web user interface for administrators and users. Other Management Server tasks

are to control and manage the resources when distributing the instances to the

Compute Nodes.

This software is available in a Community Edition, an Enterprise Edition, and

a Service Provider Edition. Only the Community Edition can be used under an open

source license.

Table 6.3 summarizes the most popular open source solutions for the implemen-

tation of virtual resource sets.

6.6 OpenStack

In summer 2010, NASA and Rackspace jointly launched an open source project

called OpenStack [117]. Many renowned companies support this project, such as

AMD, Intel, Dell, and Cloud.com. On the basis of CloudStack, OpenStack provides

the Compute and Object Storage components. The Compute service allows to

Table 6.3 Comparison of open source virtual resource sets

Name License Interface EC2 S3 EBS Hypervisor Enterprise

Eucalyptus GPL v3 AWS Yes Yes Yes

KVM, Xen,

VMware Yes

OpenNebula Apache v2.0 OCCI, AWS Partially No No

KVM, Xen,

VMware,

VirtualBox No

Nimbus Apache v2.0

WSRF,

AWS Partially Partially No KVM, Xen No

CloudStack GPL v3

CloudStack,

AWS Partially No No

KVM, Xen,

VMware Yes

OpenStack Apache v2.0

OpenStack,

AWS Yes No No

KVM, Xen,

VirtualBox,

UML No

6.6 OpenStack 55

manage large groups of virtual servers, Object Storage makes redundant, scalable

storage space available. Microsoft announced that they will adapt the OpenStack

software to their Hyper-V virtualization technology. The objective is to be able to

use Windows and open source programs together in cloud systems.

6.7 AppScale

AppScale [58] offers an open source re-implementation of the Google App Engine

functionality and interfaces. AppScale is being developed at the University of

California in Santa Barbara. With AppScale, it is possible to run and test Google

App Engine-compatible applications within a private cloud (Eucalyptus) or within

a public cloud (EC2). Moreover, AppScale can be implemented directly on the Xen

Hypervisor, without the need to interpose an IaaS. AppScale supports Python and

Java applications and emulates the Google Datastore, Memcache, XMPP, Mail, and

Authentication infrastructure services.

6.8 TyphoonAE

TyphoonAE [133] is another open source re-implementation of Google App

Engine. Here as well, developers can run Google App Engine-compatible

applications in a local environment. Unlike AppScale, TyphoonAE works well

with any Linux environment and with Mac OS X. Thus, it is not only suitable for

private and public clouds, but also for virtual machines.

Another difference compared to AppScale is that TyphoonAE exclusively

supports applications developed in Python. The software is based on the App

Engine SDK and on popular open source packages, such as NGINX, Apache2,

MySQL, memcached, and RabbitMQ, which are used to emulate the Google

infrastructure services.

6.9 Apache Hadoop

Hadoop [31] is an open source software platform which allows to easily process and

analyze very large data sets in a computer cluster. Hadoop can for example be used

for Web indexing, data mining, logfile analyses, machine learning, finance

analyses, scientific simulations, or research in the bioinformatics field.

The Hadoop system features the following properties:

• Scalability: It is possible to process data sets with a volume of several petabytes

by distributing them to several thousand nodes of a computer cluster.

• Efficiency: Parallel data processing and a distributed file system allow to

manipulate the data quickly.

56 6 Open Source Cloud Stack

• Reliability: Multiple copies of the data can be created and managed. In case

a cluster node fails, the workflow reorganizes itself without user intervention.

Hence, automatic error-correction is possible.

Hadoop has been designed with scalability in mind so that cluster sizes of up to

10,000 nodes can be realized. The largest Hadoop cluster at Yahoo! currently

comprises 32,000 cores in 4,000 nodes, where 16 petabytes of data are stored and

processed. It takes about 16 h to analyze and sort a one petabyte data set on this

cluster.

Cloudera is a company which offers packetized versions of the Hadoop system.

Various Hadoop distributions are available on the Internet for download [64].

6.9.1 MapReduce

Hadoop implements the MapReduce programming model which is also of great

importance in the Google search engine and applications [11]. Even though the

model relies on massive parallel processing of data, it has a functional approach. In

principle, there are two functions to be implemented:

• Map function: Reads key/value pairs to generate intermediate results which are

then output in the form of new key/value pairs.

• Reduce function: Reads all intermediate results, groups them by keys and

generates aggregated output for each key.

Usually, the procedures generate lists or queues to store the results of the

individual steps. As an example, we would like to show how the vocabulary in a

text collection can be acquired (see also the example in the appendix): The Map

function extracts the individual words from the texts, the Reduce function reads

them in, counts the number of occurrences, and stores the result in a list. In parallel

processing, Hadoop distributes the texts or text fragments to the available nodes of

a computer cluster. The Map nodes process the fragments assigned to them

and output the individual words. These outputs are available to all nodes via

a distributed file system. The Reduce nodes then read the word lists and count the

number of words. Since counting can only start after all words have been processed

by the Map function, a bottleneck might arise here. Figure 6.4 shows the schematic

workflow of the MapReduce function in a Hadoop cluster.

6.9.2 Hadoop Distributed File System

In order to implement the MapReduce functionality in a robust and scalable way,

a highly available, high-performance file system is required. For data processing,

Hadoop uses a specific distributed file system called Hadoop Distributed File

System (HDFS). Its architecture is based on a master node (name node) which

6.9 Apache Hadoop 57

manages a large number of data nodes. This master node processes external data

requests, organizes the storage of files and saves all metadata for the description of

the system status. In practice, the number of files that can be stored in the HDFS is

limited by the RAM available on the master node, since, for performance reasons,

all data should be transferred to the memory cache. It should be possible to realize

systems accommodating several hundred millions of files on current hardware.

Hadoop splits the files and distributes the fragments to multiple data blocks in

the cluster, thus enabling parallel access to them. In addition, HDFS saves multiple

copies of the data blocks in the cluster. This increases the reliability and guarantees

a faster access. Data integrity is ensured by optional checksum calculations: Thus, it

is possible to detect potential data corruption, and the read operation can be

redirected to an alternative, uncorrupted block. Since the master node is a single

point of failure, it is wise to provide for its replication.

Contrary to the widely used RAID systems, HDFS uses a flat storage model. This

is mainly with respect to fault tolerance: If a disk fails, a rebuild process takes place

creating new distributed copies of the affected blocks. It is important to keep this

time as short as possible in order to minimize the risk of a data loss caused by

multiple faults. In case of a failure, HDFS needs only about half an hour for

rebuilding a terabyte disk (with RAID, this may take several days due to system

constraints). If a data node or even an entire rack fails, the master node redelegates

the corresponding subtasks immediately.

If at all possible, tasks in the cluster are performed where the corresponding data

resides. For efficiency reasons, data access over the network is avoided whenever

possible. This is assessed by a distance function criterion describing the access

costs: The distance is shortest when data is accessed on the same node, it increases

for access operations within the same rack, and further grows with increasing

distances on the network.

data data data data data
data data data data data
data data data data data

data data data data data
data data data data data
data data data data data

data data data data data
data data data data data
data data data data data

data data data data data
data data data data data

Compute Cluster

Data

Data
data data data data
data data data data
data data data data
data data data data
data data data data
data data data data
data data data data
data data data data
data data data data
data data data data

p

HDFS Block 1HDFS Block 1

HDFS Block 1

HDFS Block 2HDFS Bl

HDFS Block 2HDFS Bloc

HDFS Block 2

HDFS Block 3

HDFS Block 3

3

HDFS Block 3

HDFS Block 3

Cluster

11

Bloc

HDFS Block 1

Reduce

ck 1

HDFS Block 1

Map

lock 2lock 2

ck 2ck 2
Map

HDFS Block 3

Map

Fig. 6.4 MapReduce programming model based on a distributed file system (HDFS)

58 6 Open Source Cloud Stack

6.9.3 Pig

In connection with Apache Hadoop, a platform called Pig has been created [31],

a special high-level programming environment that can be used to define data

analyses (Pig Latin). This environment is coupled with a suitable infrastructure

for performing analyses. The salient property of Pig programs is that their structure

is amenable to substantial parallelization. A particular feature of the platform is a

compiler which generates MapReduce program sequences for Hadoop. The pro-

gramming language has the following key properties:

• Ease of programming: Supports concurrent as well as parallel applications.

Complex coupled systems are implemented as data flow sequences.

• Optimization: The execution of tasks is automatically optimized so that

programmers can remain focused on the semantics of their programs.

• Extensibility: It is possible to embed self-developed functions in order to solve

domain-specific problems.

Using Pig is particularly helpful in cases where batch processing of large data

sets is required. Pig is less suitable for environments where only small subsets of

large data sets have to be processed.

6.9.4 Hive

Hive is a central data warehousing application built on top of Hadoop [98]. Hive uses

the QL query language to analyze large, structured data sets stored in the Hadoop file

system. Derived from SQL, this language allows users to transfer their existing

database applications to the Hadoop platform. An interesting feature in this context is

the capability to combine database queries with the MapReduce programming model.

6.9.5 Hadoop as a Service

Installing and operating a Hadoop cluster involves considerable overhead which

might not pay off, especially if the cluster is only used every once in a while. For

this reason, several approaches have emerged to offer Hadoop as a cloud service.

Especially noteworthy in this regard is Amazon Elastic MapReduce [41] which

is available as an Amazon Web Services component. Amazon Elastic MapReduce

is based on EC2 and is able to provision clusters of nearly any size, depending on

the current demand. The Hadoop distributed file system interacts with the S3

service, as shown in Fig. 6.5. The Elastic MapReduce service works as follows:

1. The user uploads the desired data and the Map and Reduce executable to S3.

2. Elastic MapReduce generates and starts an EC2 Hadoop cluster (master + slaves).

3. Hadoop creates a job flow that distributes data from S3 to the cluster nodes to

process them there.

6.9 Apache Hadoop 59

4. After processing, the results are copied to S3.

5. Notification when the job is finished: The user retrieves the results from S3.

It is possible to control Amazon Elastic MapReduce by specifying parameters in

the command line or graphically using a Web console [53]. The appendix of this

book contains an example of how to use Elastic MapReduce.

Besides Elastic MapReduce, there is another option to use Hadoop as a flexible

service within the Amazon Web Services framework: A dedicated Hadoop cluster

of a size suitable to solve the problem can be instantiated in the Amazon infrastruc-

ture. For this purpose, a predefined Amazon Machine Image may be used which is

provided by Cloudera as a public AMI in the Amazon Web Services context.

6.10 The OpenCirrus Project

The objective of the OpenCirrus™ project is to build and operate an international

cloud computing testbed in support of the open source cloud system research [2].

HP, Intel, and Yahoo! started the project in July 2008 together with their academic

partners IDA1, KIT2, and UIUC3. Since 2010, new members ETRI4, MIMOS5,

Your host Response
Master

Slave

Slave

Slave

EC2 cluster

Slave

Elastic
MapReduce

Request1

5

2

3

4

Fig. 6.5 Amazon elastic MapReduce (Source: Amazon)

1Infocom Development Authority, Singapore
2Karlsruhe Institute of Technology, Germany
3University of Illinois Urbana Champaign, USA
4Electronics and Telecommunications Research Institute, South Korea
5Malaysian Institute for Microelectronic Systems, Malaysia

60 6 Open Source Cloud Stack

RAS6, CESGA7, CMU8, CERCS9 as well as China Mobile and China Telecom have

joined the consortium. The partners operate federate resource centers, providing up

to 1,024 CPU cores and up to one petabyte of storage space each. Their activities

include development work on the infrastructure layer as well as on the platform and

application layers (see Chap. 3). Unlike with other cloud environments, such as

Google App Engine or Amazon Web Services, researchers and developers have full

access to all OpenCirrus system resources. This facilitates the further development

of the open source cloud stack. All system users must register in the project portal

[111]. The portal not only provides general information on the project, but also

allows researchers to request access to the resources they need for their work.

Running a cloud system which is distributed over multiple locations requires the

deployment of comprehensive shared services. These global basic services are:

• Identity management: Identity management is the basis on which all activities

can be assigned to a user profile. In this context, it is desirable to have uniform

user profiles available at all distributed locations (single sign-on). This can be

ensured by using the SSH public key authentication [116]. The public key of an

RSA key pair is kept with the resource and the user transmits the private key over

a secure connection. By indicating the private key, a client can then access the

distributed resources once the operator has registered the public key at the

corresponding location. A slightly different version of the OpenCirrus procedure

is used with Amazon Web Services.

• Monitoring: Another global service monitors the distributed resources, thus

enabling the management of the distributed infrastructures and helping to

localize and troubleshoot faults. OpenCirrus uses the Ganglia open source

project [80] for monitoring. Ganglia gathers information on the resource status

and usage for each component and aggregates them hierarchically. For this

purpose, the operators install a daemon process which transmits an XML stream

containing the resource status and all associated data to a central Web server

where this information is collected and consolidated [112].

This forms the foundation for the development and introduction of other global

services, i.e. services for common data storage and distributed application

development.

Within the scope of this project, the partners will continue the development of the

open source components discussed above, namely PRS, VRS, Hadoop, and Tashi.

Another goal is to tackle unsolved problems in cloud system research, such as:

• Standardization of interfaces

• Security techniques

6Russian Academy of Sciences, Russia
7Centro de Supercomputacion Galicia, Spain
8Carnegie Mellon University, USA
9GeorgiaTech, USA

6.10 The OpenCirrus Project 61

• Dynamic transfer of workloads (cloud bursting)

• Realization of Service Level Agreements (SLAs)

The test environment is particularly useful to enable large-scale scaling tests and

open new horizons for cloud computing. The KIT, for example, examines how to

leverage cloud techniques in high-performance computing environments. The idea

is to benefit from the dynamic properties of cloud computing for handling compu-

tationally intensive parallel applications and to design a corresponding elastic

service (High Performance Computing as a Service, HPCaaS). Particular

challenges with regard to systems are the provisioning of ensembles of tightly

coupled CPU resources and the virtualization of high-speed connections based on

Infiniband. On the platform side, the following issues are still open:

• Development of a scheduling service

• Development of MPI services

• Management of software licenses

Further information on OpenCirrus can be found on the project website [111].

62 6 Open Source Cloud Stack

Chapter 7

Economic Considerations

The economic impact of cloud computing is often seen as its key success factor.

Cloud computing is associated with the potential to fundamentally and sustainably

change the way in which IT resources are deployed and used, not only in individual

companies, but also in the IT industry as a whole. Experts often mention dramatic

time savings, lower risks, and fewer obstacles to the introduction of new

applications as well as significant cost savings in general while implementing IT

projects as the main benefits of cloud computing. This chapter gives an overview of

some fields of application relevant to cloud computing and the economic aspects

and issues associated with them.

7.1 Fields of Application

In the early times of cloud computing, the focus was on scalable Web applications

developed by companies having only a limited IT infrastructure. Well-known

examples are the TimesMachine project initiated by the New York Times [107]

or the Animoto [55] video services. In both cases, public cloud services were used

to lower the barrier of entry to this world. Thus, an easily scalable infrastructure was

available at low cost.

The TimesMachine project was motivated by the desire of making six million

articles from the New York Times archives available to the readers as PDF files.

Conventional approaches to generate the PDF files by scanning the articles to TIFF

format proved to be very costly and time-consuming; the expected data volume of

four terabytes would have meant to buy new servers and the project would have

taken several months. Instead, the entire set of articles could be made available

within only 3 days and at a fraction of the costs simply by using public cloud

services.

In the case of Animoto, cloud services helped to cope with an unexpectedly high

demand by end users. Animoto offers video services over the Web: End users can

upload separate music and image files and then receive an animated video.

C. Baun et al., Cloud Computing, DOI 10.1007/978-3-642-20917-8_7,
Springer-Verlag Berlin Heidelberg 2011

63

After linking Animoto to the Facebook.com social network, the company was

surprised by a quick and dramatic surge in demand: Up to 25,000 new users

registered every hour and it took only a short while until the number of new users

had grown to more than 250,000. To satisfy the enormous demand for video

services, Animoto required a 100-fold of the previous IT infrastructure: 3,500

servers had to be added in only 3 days. To be able to process these requests at all

– and without excessive delays – Animoto had to use public cloud services. Later,

when the demand slackened again, it was possible to scale down the use of cloud

services easily and cost-efficiently.

The question whether cloud computing pays off for a company or an application

cannot be answered generally, but must be considered on a case-by-case basis.

The answer depends on the properties and goals of the application concerned. The

TimesMachine and Animoto examples describe two different classes of

applications: TimesMachine was a one-time batch job; in the case of Animoto,

there is a continuous demand behavior which varies dynamically. Both cases

feature an enormous need for scaling, and for both tasks, parallelization is the

perfect option.

Cloud offerings are generally not restricted to specific applications. In principle,

each and every application can run in a cloud environment or be combined with

cloud services. The reasons for using cloud services vary accordingly; they range

from a one-time, temporary demand and the (sometimes periodical) handling of

hardly predictable (and sometimes extreme) load peaks to the management of

seasonal demand effects or to the outsourcing of functionalities and services to

third parties in general. The use of cloud services can make sense for testing

purposes as well as in production environments. The provider company may

conceal the use of one or more cloud services to the end users, as in the Animoto

case, or these services may be directly visible, as in the case of Web-based Office

applications.

7.2 Evaluation Models

By dynamically scaling IT resources in cloud computing and by adopting a usage-

dependent billing system, companies are enabled to transform fixed expenditure

into operating expenditure. Pay as you go billing models are based on the actual use

of resources, billed over time. This contrasts to purchasing or leasing models where

resources are definitely bought or rented and paid for over a fixed period (contract

term), independently of their actual use.

The advantage of usage-dependent billing models for the application and for the

company lies in the elasticity and in the fact that there is little risk of

overprovisioning and underutilization (too many resources are available and not

used sufficiently) or of underprovisioning and saturation (too few resources are

available and peak loads cannot be accommodated). Elasticity refers to the capabil-

ity of being able to add or remove resources with fine granularity within minutes

64 7 Economic Considerations

(and not within weeks or even months) and thus to be able to better meet the real

requirements of an application.

In practice, overprovisioning and underutilization are the rule in conventional

data centers, and an optimum resource utilization is hardly achievable. If there is an

unexpectedly high demand of resources, however, it cannot be met immediately,

and the reverse case of an unexpected drop in demand even adds to the degree of

underutilization. The financial consequences are not to be neglected. What is more,

it is often not possible to reliably predict and schedule the resource demand. Many

e-commerce applications face a highly varying demand which is not only due to

seasonal changes, but may be influenced strongly by temporary trends and effects

(for instance when triggered by social networks).

7.2.1 Cost Models

To evaluate cloud services from an economic point of view, cost models can be

used. In comparative cost calculations, the costs of the actual usage of cloud

offerings (e.g. in hours and server units) are contrasted with the data center costs

(or costs of an IT infrastructure which has to be purchased and maintained by the

operator).

A very simple model is suggested in [1], where the costs of a cloud service are

compared to the costs of a data center, factorizing the average utilization of the data

center and assuming that the customer’s profit is proportional to the number of

resource-hours. It has to be noted, however, that a data center always has a fixed

capacity while (public) cloud services theoretically have no upper capacity limit.

The costs incurred by a data center are manifold, because operating expenses

such as power (in particular for computer cooling systems), rental and real estate

costs as well as costs for system administration staff have to be taken into account

besides the hardware acquisition costs.

In this context, the energy costs make up for the major part of the total cost of

ownership (TCO). Generally, efficient use of energy can be achieved more easily in

large data centers than in small ones. Owners of large data centers are able to realize

substantial cost savings by negotiating lower energy purchase prices or by

distributing or transferring data centers to regions with reduced energy costs. In

addition, they benefit from significantly lower hardware purchase prices so that the

money saved here can be invested in failsafe and data security systems. AMicrosoft

study accordingly identifies disadvantages for small corporate data centers and

forecasts a long-term trend towards multi-tenant utilization of very large data

centers [104]. Currently, data centers of unparalleled dimensions are emerging all

over the world; they take up enormous surface areas and represent investments in

the order of several hundred million US dollars. Global data centers will comprise

more than 100,000 servers and thus can dramatically reduce the TCO per server.

According to this study, the costs will not pay off for organizations having less than

7.2 Evaluation Models 65

100 servers. For organizations that operate about 1,000 servers, the costs of using

a private cloud will be ten times higher than those for a public cloud.

For consumers, likewise, it is advisable to take a closer look at the calculation

of cloud service costs. Current cloud offerings distinguish, for example, the costs of

provisioning a computing or storage unit (in the case of an IaaS) from the costs of

resource interaction, i.e. the number of invocations or the data volume transmitted

over the Internet. Thus, cost determination largely depends upon the properties and

the requirements of the application in question.

7.2.2 TCO Framework

Currently, a number of costing models and decision support systems are being

developed both in the field and in application-oriented research. An example of

a TCO (Total Cost of Ownership) framework specifically developed for cloud

computing is presented in [18]. Starting with a qualitative analysis of the applica-

tion (business scenario), a quantitative cost analysis in a second step contrasts the

costs for a cloud service with the costs for a reference architecture. By comparing

the opportunity costs, an assessment is obtained.

Figure 7.1 illustrates the different cost estimation steps which can be supported

by corresponding tools. The first step is to create a model of the application with all

its relevant requirements and properties. Later, the required factors for a quantita-

tive cost analysis are selected and weighted based on qualitative requirements and

properties. The simplest tool can be a matrix listing the available cloud services and

alternative architectures in rows and the different requirements and properties in

columns. This matrix can then be evaluated like a questionnaire (or checklist).
In [21], this idea has been extended into a decision support system which helps

consumers to relate different criteria, requirements, and preferences of various

kinds as well as technical, economic, or legal aspects in a systematic way so that

they can use an iterative process to decide whether to accept or reject a cloud

offering.

7.3 Business Models

In the wake of cloud computing, new business models have emerged which vary

depending on the position of the service offering in the cloud computing stack. In

this context, the dynamic character of the Internet as a continually changing

technology, business, and collaboration platform plays a key role. Due to the

acceptance and popularity of the Internet which encompasses all facets of daily

life and of business, many novel IT-based services are emerging that lend them-

selves to a service-oriented society.

In the IaaS area, for example, open cloud architectures allow to add a number of

third-party services, thus forming the basis of an ecosystem of providers who offer

66 7 Economic Considerations

added value, such as for cloud application monitoring and management. This

spawns market and business models that operate in the context of combined

cloud services from different providers.

Fig. 7.1 TCO framework

7.3 Business Models 67

In the PaaS and SaaS areas, however, many of the existing business models have

been coined primarily by a single provider. Software-Plus-Services strategies, such
as pursued by Microsoft, combine the classical license-based software approach

with the flexibility and the advantages of Internet-based cloud services. Thus, it is

possible to supplement on-premise software products with Internet services or to

replace them entirely with on-demand solutions.

68 7 Economic Considerations

Chapter 8

Opportunities and Risks

Cloud computing is still a very young and dynamic field characterized by a buzzing

industry. Virtually every organization in the industry and even parts of the public

sector are taking on cloud computing today, either as a provider or as a consumer.

Primarily US-based companies, such as Amazon, Google, or Microsoft are cur-

rently shaping the cloud services market. But many smaller companies also show

a lot of commitment in this field. There is no doubt that cloud computing is

a disruptive technology which has the potential to change our understanding of

how to provision and leverage IT services in a fundamental and sustainable way.

The effects might even be comparable to the introduction of the personal computer

some 25 years ago.

8.1 Market Development

There is already a rich ecosystem of cloud services and providers. The most diverse

services can be developed, tested, and operated. On the one hand, these are

commercial public cloud offerings on the infrastructure, platform, and application

levels, on the other hand, private clouds can be built and deployed using products

like VMware vSphere [136] or open source developments such as Eucalyptus [74]

and Hadoop. This way, a dynamic landscape is created where, in the near future, it

will be possible to transparently compose and orchestrate services from public and

private sources. This opens up a variety of opportunities to dynamically optimize

both the quality of service and the costs.

C. Baun et al., Cloud Computing, DOI 10.1007/978-3-642-20917-8_8,
Springer-Verlag Berlin Heidelberg 2011

69

8.2 Situational Evaluation

Cloud computing offers a multitude of opportunities, but also entails some risks.

For one thing, developers and users are faced with the difficult task of selecting

a suitable service from this vast choice of cloud offerings which sometimes differ

considerably as to their properties and conditions. For another thing, there are

concerns about the safety and privacy of data as well as the vendor lock-in issue.

In this context, it is important to know that the desired degree of security can be

achieved by data encryption: In some cases, encrypted data stored in the cloud are

safer than unencrypted data located in the user’s data center. With respect to vendor

lock-in, it has to be said that data access can be controlled by establishing

corresponding agreements between the business partners. Amazon, for instance,

offers corresponding import and export services for large-volume data sets.

Armbrust et al. [1] name ten risks which at the same time are opportunities for

the adoption and growth of cloud computing (see Table 8.1). The list includes

questions on the availability of the services and other quality properties, on data

lock-in and potential performance, scalability, and troubleshooting problems. For

the risks which have been identified, solutions are conceivable, even if some of

them are currently still under research. Please refer to [1] for a more extensive

discussion of these risks and opportunities.

There are already signs that security-related issues can be solved by technologi-

cal progress, that legal issues are also being taken into account and, what is more,

that the attitude and perception of consumers are moving towards a greater confi-

dence in cloud technologies.

Table 8.1 Risks and opportunities of cloud computing (selection)

Risks Opportunities

1 Service availability Addressing multiple cloud providers to ensure service continuity

2 Data lock-in Standardization of interfaces (APIs)

3

Data privacy and

traceability

Use of data encryption, virtual networks (VLANs), and firewalls

Compliance with national legislation by geographical data

storage

4 Data transfer bottlenecks Shipment of hard disks via third parties (e.g. FedEx, UPSa)

5

Poor performance

predictability Better support of virtual machines. Use of flash memory.

6

Scalability of persistent

storage space Development of scalable storage space technologies

7

Errors in large,

distributed systems Development of debuggers for distributed machines

8 Quick scalability

Development of automatic scaling tools based on machine

learning Resource and cost awareness on the part of users and

providers

9 Reputation and liability Use of third-party services, e.g. for confidential e-mails

10 Software licenses Pay-for-use licenses. Software and services are sold as a package
aAs described in Sect. 4.1, this is already common practice

70 8 Opportunities and Risks

8.3 Conclusion

From an economic point of view, cloud computing has become one of the strongest

emerging markets in the IT industry: According to Gartner, 2009 cloud services

sales already reached 56 billion dollars; Meryll Lynch analysts predict a market

volume of up to 160 billion dollars for 2011. In the light of these findings, CIOs and

IT managers should continue addressing the innovative topic of cloud computing

and make their IT landscapes fit for this trend.

Cloud computing is and obviously remains an exciting, promising topic. We

hope that, with this little compendium, we succeeded in giving you a short and

concise overview of the current developments, technologies, and trends.

8.3 Conclusion 71

.

Chapter 9

Appendix

In this appendix, we will finally present some cloud offerings and their basic tools

in real-world examples so the our dear readers can get started quickly with their

own first cloud exercises.

9.1 Performing EC2 Tasks with the Amazon Tools

The following examples show how typical steps in EC2 can be performed using the

Amazon EC2 command line tools [43]. First, you must create a key pair for the

desired region. These keys can be reviewed and deleted at any time.

• Create a secret key pair in the eu-west-1 region

ec2-add-keypair secret --region eu-west-1
• Review the key pairs

ec2-describe-keypairs --region eu-west-1
• Delete the key pair

ec2-delete-keypair secret
--region eu-west-1

When working with different EC2 applications, it is recommended to set up and

use dedicated security groups. Each of these security groups may have different

firewall settings so that any requirements with respect to openness and security can

be met.

• In the eu-west-1region, create a security group named west_group and

add the description This is a new group
ec2-add-group west_group

--region eu-west-1
-d "This is a new group"

• Open TCP port 80 for the security group

ec2-authorize west_group -P tcp -p 80

C. Baun et al., Cloud Computing, DOI 10.1007/978-3-642-20917-8_9,
Springer-Verlag Berlin Heidelberg 2011

73

• Review the firewall rules for the new security group

ec2-describe-group west_group
--region eu-west-1

• Delete the security group

ec2-delete-group west_group
--region eu-west-1

The following commands demonstrate how you typically work with images and

instances. These commands are used to review and start images and to review, stop,

start and remove instances.

• List all images in the eu-west-1 region whose owner is Amazon itself

ec2-describe-images -o amazon
--region eu-west-1

• Create two instances of the image named ami-13042f67 in the eu-west-1
region in the eu-west-1a availability zone with the secret key pair and the

m1.small instance class within the west_group security group

ec2-run-instances ami-13042f67
--region eu-west-1
-z eu-west-1a
-k secret
-g west_group
-n 2 -t m1.small

• Review the instances in the eu-west-1 region

ec2-describe-instances --region eu-west-1
• Stop the i- f1e1a786 instance

ec2-stop-instances i-f1e1a786
--region eu-west-1

• Start the instance

ec2-start-instances i -f1e1a786
--region eu-west-1

• Remove the instance

ec2-terminate-instances i -f1e1a786
--region eu-west-1

When you start an instance, its private and public DNS names are generated. In

order to use the EC2 resources efficiently, you often need a fixed IP address.

Amazon ensures this by providing elastic IP addresses.

• Create a new elastic IP address in the eu-west-1 region

ec2-allocate-address --region eu-west-1
• Review the elastic IP addresses

ec2-describe-addresses --region eu-west-1
• Associate the elastic IP address 79.125.121.3 with the i-f1e1a786

instance

ec2-associate-address 79.125.121.3
-i i-f1e1a786
--region eu-west-1

74 9 Appendix

• Delete the elastic IP address

ec2-disassociate-address 79.125.121.3
--region eu-west-1

• Release the elastic IP address

ec2-release-address 79.125.121.3
--region eu-west-1

9.2 Performing EBS Tasks with the Amazon Tools

The following commands from the Amazon EC2 command line tools can be used to

perform typical tasks with EBS volumes, i.e. creating, reviewing, mounting,

unmounting, and deleting volumes.

• Create a 1 GB volume in the eu-west-1b availability zone within the eu-
west-1 region

ec2-create-volume --size 1
--region eu-west-1
-z eu-west-1b

• Review the volumes in the eu-west-1 region

ec2-describe-keypairs --region eu-west-1
• Attach the volume named vol-e466838d to the i-58859c2c instance and

the /dev/sdf device ID

ec2-attach-volume vol-e466838d
--region eu-west-1
-i i-58859c2c
-d /dev/sdf

• Use commands to work with the volume within the instance

mkdir /mnt/ebsvolume1
yes | mkfs.ext3 /dev/sdf
mount /dev/sdf /mnt/ebsvolume1
umount /mnt/ebsvolume1

• Detach the volume from the instance

ec2-detach-volume vol-e466838d
--region eu-west-1
-i i-58859c2c

• Delete the volume

ec2-delete-volume vol-e466838d
--region eu-west-1

It is also possible to create so-called snapshots of EBS volumes which can later

be used for building new volumes.

9.2 Performing EBS Tasks with the Amazon Tools 75

• Create a snapshot of the volume named vol-e466838d
ec2-create-snapshot vol-e466838d

--region eu-west-1
• Retrieve the status of snapshot snap-820de2eb

ec2-describe-snapshots snap-820de2eb
--region eu-west-1

• Create a volume from this snapshot

ec2-create-volume --snapshot snap-820de2eb
--region eu-west-1
-z eu-west-1b

9.3 Performing RDS Tasks with the Amazon Tools

The following commands from the Amazon RDS command line tools [51] illustrate

how to work with the Relational Database Service:

• Create an 20 GB RDS instance named mydb of the db.m1.large instance

type

rds-create-db-instance --engine mysql5.1
--db-instance-identifier mydb
--db-instance-class db.m1.large
--allocated-storage 20
--master-username dbroot
--master-user-password dbpass

• Display the instance status

rds-describe-db-instances
• Grant access to certain IP address ranges (CIDR notation)

rds-authorize-db-security-group-ingress default
--cidr-ip 0.0.0.0/0

• In the RDS instance, you can now use tools or programs, e.g. in order to import

a mysql database which can then be manipulated interactively

mysql -h mydb.cpjgp4subzas.us-east-1.rds.amazonaws.com
-u dbroot --password¼dbpass

mysql>CREATE DATABASE world;
mysql>USE world;
mysql>SOURCE world.sql;
mysql>SELECT * FROM world.City LIMIT0, 100; mysql>quit

• If more space is required, you can increase the instance size dynamically

rds-modify-db-instance mydb
--apply-immediately -s 50

• Create a snapshot named mySnapshot
rds-create-db-snapshot mydb -s mySnapshot

• Delete the snapshot

rds-delete-db-snapshot mySnapshot

76 9 Appendix

• Delete the instance without keeping the data in a final snapshot

rds-delete-db-instance mydb --skip-final-snapshot
• If you intend to re-use the database, however, it is wise to create a final snapshot

rds-delete-db-instance mydb
-final-db-snapshot-identifier myWorldDatabase

• From the snapshot, you can re-instantiate the database later

rds-restore-db-instance-from-db-snapshot mydb
-db-snapshot-identifier myWorldDatabase

9.4 Performing S3 Tasks with s3cmd

s3cmd is a helpful command line tool for working with Amazon S3.

• Configure the access data

s3cmd --configure
• Display a list of my buckets

s3cmd ls
• Create a bucket

s3cmd mb s3://Bucket
• Upload objects to a bucket

s3cmd put localFile s3://Bucket/remoteFile
• Retrieve the contents of a bucket

s3cmd ls s3://Bucket
• Download objects from a bucket

s3cmd get s3://Bucket/remoteFile localFile
• Delete objects from a bucket

s3cmd del s3://Bucket/remoteFile
• Delete an (empty) bucket

s3cmd rb s3://Bucket

The s3cmd configuration is stored in a file named .s3cfg. If you want to use

an alternative configuration, you can specify it in the command line as follows:

-c s3cfg.alternative.

9.5 Using Google App Engine

In Google App Engine, each user can launch up to 10 applications. New application

names may be reserved on the App Engine website [83]. Please note, however, that

each application namemust be unique inApp Engine, i.e. it may be used one time only.

The applications within Google App Engine can be accessed by entering the

following address:

http://<application>.appspot.com

9.5 Using Google App Engine 77

The so-called dashboard [83] holds all relevant information on the user’s

applications. To facilitate the development process, multiple versions of each

application may be uploaded, each of them being directly accessible:

http://<#>.latest.<application>.appspot.com
For developing and running your own applications, you need a Web browser

environment (any Web browser will do) and the App Engine SDK [84] for Python

or Java. The SDK is available for the following operating systems: Linux/UNIX,

Mac OS X, and Windows. In addition, the Google Eclipse plug-in [91] can

be used.

App Engine exclusively supports Python 2.5.2 and Java 6.

The following steps illustrate how to develop and run a simple Python applica-

tion from the Linux command line.

• Review the Python version number

python --version
• Install the App Engine SDK

unzip google_appengine_1.3.1.zip
export PATH¼$PATH :�/google_appengine
appcfg.py -h

• Create an application directory

mkdir gae-example
cd gae-example

• Create the app.yaml configuration file

application: gae-example
version: 1
api_version: 1
runtime: python
handlers:
- url: .*
script: main.py

• Create a miniature application in main.py
#!/usr/bin/env python
print 0Hello world0

• Using the development server, start the application in the App Engine SDK

dev_appserver.py gae-example/
• Test the application in the Web browser by entering the following URL:

http://localhost:8080
• Transfer the application to App Engine

appcfg.py --passin --email ¼ <email>
update gae-example/

• Request the application log data

appcfg.py --passin --email¼<email>
request_logs gae-example/ logs.txt

78 9 Appendix

9.6 Using AppScale

The AppScale tools are a collection of Ruby scripts that can be used to control the

AppScale private cloud PaaS.

• Create the SSH keys for the instances

appscale-add-keypair
• Start the AppScale private cloud instances

appscale-run-instances
• Check the status of all instances

appscale-describe-instances
• Upload the application to the instances

appscale-upload-app.
• Set the administrator password

appscale-reset-pwd
• Remove the application from the instances

appscale-remove-app
• Stop the AppScale private cloud instances

appscale-terminate-instances

9.7 Installing and Using Eucalyptus

Eucalyptus can be installed from binary packages or by compiling from source. For

a detailed description of the installation procedure, please refer to the project

website [74]. It is recommended to use the latest Ubuntu server version because it

already contains all Eucalyptus packages and thus allows for a fast installation. The

Eucalyptus cloud infrastructure can be controlled using the Euca2ools which are

a component of the Eucalyptus distribution.

As an alternative, it is possible to use the Amazon EC2 command line tools.

To list the resources that can be accessed by Eucalyptus, the euca-
describe-availability-zones verbose command can be used.

The output includes the number of existing and free resources. Five categories of

virtual machines with different capabilities in terms of computing power, RAM,

and disk capacity have been defined. These five categories are:

• Small instance (m1.small)
• High CPU medium instance (c1.medium)
• Large instance (m1.large)
• Extra large instance (m1.xlarge)
• High CPU extra large instance (c1.xlarge)

The list also indicates the connected NCs and the cluster names. The category

identifiers for Eucalyptus and Amazon EC2 are identical. They differ, however, in

9.7 Installing and Using Eucalyptus 79

the resources allocated to the instance classes, as shown in Tables 6.1 and 6.2.

Unlike Amazon AWS, resource allocation within a Eucalyptus private cloud can be

defined freely in the different instance classes. However, it is not possible to define

additional or to rename existing instance classes.

Before you can start virtual machines (instances) in the cloud, at least one file

system including an installed operating system, a kernel, and, if applicable, a RAM

disk need to be registered in the Eucalyptus system as images. For this purpose, the

euca-bundle-image, euca-upload-bundle and euca-register
commands are used.

During the registration of the file system/kernel/RAM disk images, unique

identifiers are assigned to the Eucalyptus Machine Image (emi-xxxxxxxx),
the Eucalyptus Kernel Image (eki-xxxxxxxx), and the Eucalyptus RAM Disk

Image (eri-xxxxxxxx). The euca-describe-images command gives an

overview of the installed file system/kernel/RAM disk images.

Before instantiating the virtual machines, a key pair should be generated that can

be used later to access the resource. Invoking the euca-add-keypair command

returns the private key and saves it in a local file for later use:

euca-add-keypair mykey > mykey.private
Then, the new private key is protected against unauthorized use:

chmod 0600 mykey.private
To list the available keys, enter the euca-describe-keypairs command:

euca-describe-keypairs
KEYPAIR mykey 33:da:6e:13:96:e6:f7: 3b:b7:34:a6:28:

ba:2f:64:ab:83:70:ef:70

Free resources and available instance categories

euca-describe-availability-zones verbose

AVAILABILITYZONE SCC_Cloud 141.52.167.65

AVAILABILITYZONE | - vm types free / max cpu ram disk

AVAILABILITYZONE | - m1.small 0026 / 0032 1 384 4

AVAILABILITYZONE | - c1.medium 0026 / 0032 1 768 6

AVAILABILITYZONE | - m1.large 0025 / 0030 1 1280 10

AVAILABILITYZONE | - m1.xlarge 0022 / 0024 1 2048 16

AVAILABILITYZONE | - c1.xlarge 0012 / 0015 2 2048 16

Register the kernel image

euca-bundle-image -i vmlinuz --kernel true

euca-upload-bundle -b kernelbucket -m /tmp/vmlinuz.manifest.xml

euca-register kernelbucket/vmlinuz.manifest.xml

IMAGE eki-803516F2

Register the RAM dis

euca-bundle-image -i initrd.img --ramdisk true

euca-upload-bundle -b rambucket -m /tmp/initrd.img.manifest.xml

euca-register rambucket/initrd.img.manifest.xml

IMAGE eri-E76C1849

80 9 Appendix

Register the operating system (file system) image

euca-bundle-image -i ubuntu.img --kernel eki-803516F2

--ramdisk eri-E76C1849

euca-upload-bundle -b imagebucket -m /tmp/ubuntu.img.manifest.xml

euca-register imagebucket/ubuntu.img.manifest.xml

IMAGE emi-8D1F1369

Display an overview of the installed file system/kernel/RAM disk images

euca-describe-images

IMAGE emi-8D1F1369 imagebucket/ubuntu.img.manifest.xml

admin available public x86_64 machine

IMAGE eki-803516 F2 kernelbucket/vmlinuz.manifest.xml

admin available public x86_64 kernel

IMAGE eri-E76C1849 rambucket/initrd.img.manifest.xml

admin available public x86_64 ramdisk

Start two instances

euca-run-instances emi-8D1F1369 --kernel eki-803516F2

--ramdisk eri-E76C1849

-k mykey -n 2 -t m1.small

Overview of the currently running instances

euca-describe-instances

RESERVATION r-3DDE07D9 admin default

INSTANCE i-4901084 F emi-8D1F1369 141.2.3.160 141.2.3.160

running mykey 0 m1.small

2010-09-01 T13:54:28.917Z SCC_Cloud eki-803516F2 eri-E76C1849

RESERVATION r-42FA0732 admin default

INSTANCE i-463B08BE emi-8D1F1369 141.2.3.161 141.2.3.161

running mykey 0 m1.small

2010-09-01 T13:54:28.917Z SCC_Cloud eki-803516F2 eri-E76C1849

Terminate both instances

euca-terminate-instances i-4901084 F i-463B08BE

Then, the images can be started as instances with the euca-run-instances
command. If more resources are required than the most basic category (m1.
small) can provide, you can select a higher instance class (e.g. m1.large)
when starting the instance. In the example above, two instances of the previously

registered Debian 5.0 images with Kernel 2.6.26 and a suitable RAM disk are

created. It is agreed that the instances can be accessed by entering the mykey key.

To monitor the instances, you can use the euca-describe-instances
command. Each instance has an IP address and a unique instance number

(i-xxxxxxxx).
Via Secure Shell, you can directly log on to a virtual machine by indicating the

key that was created upon instance startup:

ssh -i mykey.private 141.52.166.160
The euca-terminate-instances command terminates one or more

instances.

9.7 Installing and Using Eucalyptus 81

The command line tools presented here help to automate certain tasks. They are

intended for system administrators rather than for normal users. For simpler

applications, there are appropriate tools with graphical user interfaces, such as

ElasticFox [72].

9.8 Data Mining with Amazon Elastic MapReduce

The MapReduce programming model provides a very elegant way to solve statisti-

cal problems in conjunction with very large data collections. The following simple

task will be used as an example:

• How large is the vocabulary in Shakespeare’s works?

• Which word is used most often there?

• Which protagonist is mentioned most often?

We will solve this problem by using the Amazon Elastic MapReduce console

[53], as described in Chap. 6. Three steps are required:

1. Upload Data to Amazon S3 Bucket: First, the Shakespeare texts are required.

They are available for instance in the Gutenberg project [95] from where they

can be downloaded as an ASCII file. In order to be used as input, these texts must

be transferred to Amazon S3 and stored in a common directory (e.g. with S3Fox

in < YourBucket>/input).
2. Create a Job Flow on Amazon Elastic Map Reduce: After clicking the Create

New Job Flow button, the job properties can be specified.

• Define Job Flow: Enter a flow job name (e.g. Shakespeare) and
• Select the Word Count (Streaming) application from Run a sample

application
• Specify Parameters: location of the input and output directories (e.g.

<YourBucket>/input, <YourBucket>/output); mapper: word

Splitter.py; reducer: aggregate
• Configure EC2 Instances: Specify the number and size of the resources

required

• Bootstrap Actions: Proceed with no bootstrap actions

• Review: Check the settings

Then, the job flow can be created and processed (Create Job Flow). The setup
may take some minutes, then the WordCount example is run using the

Shakespeare texts. The mapping function is executed simultaneously on the

specified EC2 instances. It splits the texts from each file and supplies output in

the form of word lists. These word lists are evaluated by the Reducer nodes

which also run simultaneously and the results are then stored as lists in the

selected S3 output directory (part-00000, part-00001,. . .).
3. Get Results from Amazon S3 Bucket: The results can then either be processed

directly in an EC2 instance of the Amazon cloud or they can be downloaded to a

82 9 Appendix

local machine. For this purpose, you can use either S3Fox or a command line

command (if the required file shares have been defined):

wget -r
http://<YourBucket>.s3.amazonaws.com/output/part-00000

Next, the intermediate results provided by the Reducer function must be

aggregated and sorted alphanumerically:

cat output/part-* | awk 0{print $2, $1}0

| sort -n -r > result

Now, the initial questions can be answered:

How large is the vocabulary in Shakespeare’s works?

wc result

23688 47376 247338 result

Which word is used most often there?

head result

29854 the

27554 and

23357 i

21075 to

18520 of

15523 a

14264 you

12964 my

11955 that

11842 in

Which protagonist is mentioned most often?

grep henry result

1361 henry

9.8 Data Mining with Amazon Elastic MapReduce 83

.

Glossary

Amazon Online retailer and Web service provider with a strong presence in cloud

computing. Amazon’s Web address: http://www.amazon.com; Amazon’s Web

services: http://aws.amazon.com

App Engine Programming environment for the Google infrastructure used to

develop Web applications in Python or Java.

AppScale Free private cloud implementation of Google App Engine.

AWS AmazonWeb Services. Collection of various cloud computingWeb services

provided by Amazon.

Azure Windows Azure platform. PaaS from Microsoft.

Cloud Provisioning of scalable IT services as Web services with usage-dependent

billing.

Cloudera Free, easy to install Hadoop distribution.

Cloud gaming Service which leverages cloud computing to make high-end video

games available on low-end devices, e.g. TV sets, older PCs/MACs, and mobile

end devices such as smart phones.

Cloud Print Printing from within the cloud. With this concept devised by Google,

print jobs submitted by (mobile) end devices are sent to a printer on the Internet,

either directly or via a proxy which handles the necessary conversion.

CloudStack Free private cloud IaaS from Cloud.com with an EC2-compatible

interface.

Cluster Group of closely coupled computers in a network which are managed and

used jointly.

CRM Customer Relationship Management. System that supports communication

with customers. Ensures that standardized workflows are used for marketing,

sales, and customer service.

Crowdsourcing See Humans as a Service (HuaaS).

Cumulus Free private cloud storage service for Web objects with an S3-compati-

ble interface. Cumulus is a Nimbus component.

EBS Amazon Elastic Block Store. Provides block-oriented storage space for the

virtual EC2 servers.

C. Baun et al., Cloud Computing, DOI 10.1007/978-3-642-20917-8,
Springer-Verlag Berlin Heidelberg 2011

85

EC2 Amazon Elastic Compute Cloud. A Web service which allows to run virtual

instances on the Amazon servers.

Elasticity In cloud computing, resources can be added and removed with fine

granularity and within minutes in order to satisfy the actual demand of an

application.

Emulator Functional duplicate of the entire hardware of a computer system.

Applications or operating systems for a different hardware architecture can be

used without making any changes.

Eucalyptus Free implementation of the EC2, S3, and EBS AmazonWeb Services.

Google Storage Web services-based storage service for Web objects.

Grid Technology for integrating and sharing distributed, heterogeneous resources

independently from their actual location.

Hadoop Platform for working with programs that handle large data sets, based on

MapReduce. This is an Apache project powered by Yahoo! It was named after

a yellow stuffed elephant owned by the son of chief developer Doug Cutting.

Hive Hive is a central data warehousing application built on top of Hadoop.

HPCaaS High Performance Computing as a Service.

HuaaS Humans as a Service. Adopts the principle of crowdsourcing, i.e. human

creativity is offered as a resource.

Hybrid cloud Combination of public and private clouds.

Hypervisor Meta-operating system in virtualization which distributes the hard-

ware resources among the guest systems and is responsible for access

coordination.

IaaS Infrastructure as a Service. Implements an abstract view on hardware with

the purpose of offering virtual IT components in a cloud.

LaaS Landscape as a Service. Complex software systems with no or only limited

multi-tenancy support, such as SAP R3, offered as SaaS.

MapReduce Programming model for parallel data analysis. This algorithm was

published by Google in 2004.

Multi-tenancy Capability of managing multiple tenants (customers) on the same

server or software system, while none of the tenants can see the other tenants’

data and applications.

Nimbus Free private cloud IaaS with an EC2-compatible interface, based on the

Globus 4 grid middleware.

OpenNebula Free private cloud IaaS with an EC2-compatible interface.

Open Source Software whose source is publicly available and subject to an open

source license approved by the Open Source Initiative (OSI), a body which is

dedicated to promoting the development of open source software.

PaaS Platform as a Service. Virtual programming and execution environment for

applications which enables transparent scaling. Billing is based on the actual

resource consumption and usage time.

Paravirtualization Virtualization technique allows to provide an application

interface to the guest operating systems which, in turn, need to be modified

accordingly because each direct hardware access must be replaced by the

corresponding hypervisor interface call.

86 Glossary

Pig Programming environment which includes an optimizing MapReduce com-

piler built on top of Hadoop. The associated programming language is called Pig
Latin.

Private Cloud Cloud services are operated in-house, i.e. within a company.
Public Cloud Cloud services are operated by an external cloud provider.
RDS Relational Database Service. This service provided by Amazon allows the

deployment and operation of a relational database.

REST Representational State Transfer. Style of software architecture based on the

World Wide Web.

S3 Amazon Simple Storage Service. Web services-based storage service for Web

objects.

SaaS Software as a Service. Software is operated by a provider and can be used

over the Internet. The services are billed for the time they were actually used.

SDC Secure Data Connector. Applications within App Engine can be integrated

into the user’s infrastructure.

Service See Web service.

SimpleDB Distributed database system in AWS which provides a simple, rela-

tional database model.

SLA Service Level Agreement. Agreement on the quality of service.

SOA Service-oriented architecture. A technical, organizational, and business

architecture based on services.

SOAP Messaging standard for the communication in networked systems.

SQS Simple Queue Service. A messaging service in AWS which provides a simple

message queue.

TCO Total Cost of Ownership. Total cost of a service.

TyphoonAE Free private cloud implementation of Google App Engine.

URI Uniform Resource Identifier. String which uniquely identifies a resource.

Virtualization Abstraction layer between the services and the IT infrastructure.

VPC Virtual Private Cloud. Allows to integrate AWS EC2 resources into an

existing IT infrastructure using an encrypted VPN tunnel.

Walrus Free private cloud storage service for Web objects with an S3-compatible

interface. Walrus is a Eucalyptus component.

Web service AWeb service is a software application uniquely identified by a URI,

whose interfaces can be defined, described, and located as XML artifacts. AWeb

service supports the direct interaction with other software agents through XML-

based messages which are exchanged via Internet protocols.

XML Extensible Markup Language. Standardized language used to represent

hierarchically structured information in the form of text files.

Glossary 87

.

Bibliography

1. Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin

A, Stoica I, and Zaharia M. Above the Clouds: A Berkeley View of Cloud Computing.

Technical Report No. UCB/EECS-2009-28. Electrical Engineering and Computer Sciences.

University of California at Berkeley. USA. 2009

2. Avetisyan A, Campbell R, Gupta I, Heath M, Ko S, Ganger G, Kozuch M, O’Hallaron D,

Kunze M, Kwan T, Lai K, Lyons M, Milojicic D, Lee HY, Soh YC, Ming NK, Luke JY,

Namgoong H. Open Cirrus: A Global Cloud Computing Testbed. IEEE Computer, Vol 43,

No 4, pp. 42–50, 2010.

3. Baun C und Kunze M. Infrastrukturen für Clouds mit Eucalyptus selbst aufbauen. iX 4/2009.

S.128–130. Heise Zeitschriften Verlag

4. Baun C, Kunze M und Ludwig T. Servervirtualisierung. Informatik-Spektrum 3/2009.

S.197–205

5. Bengel G, Baun C, Kunze M und Stucky K-U. Masterkurs Parallele und Verteilte Systeme.

Grundlagen und Programmierung von Multicoreprozessoren, Multiprozessoren, Cluster und

Grid. Vieweg und Teubner, Wiesbaden. 2008

6. Benslimane D, Dustdar S, and Sheth A. Services Mashups: The New Generation of Web

Applications. IEEE Internet Computing. http://dx.doi.org/10.1109/MIC.2008.110. IEEE

Educational Activities Department. Piscataway. NJ. USA

7. Berg J, Forsythe R, Nelson F, and Rietz T. Results from a dozen years of election futures

markets research. Handbook of Experimental Economic Results. 2001

8. Carr N. The Big Switch. Rewiring the World, from Edison to Google. W.W.Norton. 2008

9. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A

und Gruber RE. Bigtable: A Distributed Storage System for Structured Data. Symposium on

Operating System Design and Implementation. 2006

10. Chisnall D. The Definitive Guide to the Xen Hypervisor. Prentice Hall. USA. 2008

11. Dean J and Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters.

OSDI2004. San Franzisko. 2004.

12. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A,

Sivasubramanian S, Vosshall P, and Vogels W. Dynamo: Amazon’s Highly Available

Key-Value Store. ACM Symposium on Operating Systems Principles. 2007

13. Dostal W, Jeckle M, Melzer I und Zengler B. Service-orientierte Architekturen mit Web

Services. Spektrum. 2005

14. Dragovic B, Fraser K, Hand S, Harris T, Ho A, Pratt I, Warfield A, Barham P, and

Neugebauer R. Xen and the Art of Virtualization. Proc. ACM Symposium on Operating

Systems Principles. 2003

15. HP Integrated Lights-Out 2 User Guide. HP

89

16. Hibler M, Ricci R, Stoller L, Duerig J, Guruprasad S, Stack T, Webb K, and Lepreau J.

Large-scale Virtualization in the Emulab Network Testbed. Proceedings of the 2008

USENIX Annual Technical Conference. 2008

17. Keahey K and Freeman T. Contextualization: Providing One-Click Virtual Clusters.

eScience 2008

18. Klems M, Nimis J, and Tai S. Do Clouds Compute? A Framework for Estimating the Value

of Cloud Computing. Proc. 7th Workshop of e-Business (WeB 2008). Springer LNBIP

19. Lai K, Rasmusson L, Adar E, Sorkin S, Zhang L, and Huberman BA. Tycoon: an Implemen-

tation of a Distributed Market-Based Resource Allocation System. Multiagent and Grid

Systems. 2005

20. Lenk A, Sandholm T, Klems M, Nimis J, and Tai S. What’s inside the Cloud? An Architec-

tural Map of the Cloud Landscape. ICSE 2009 Workshop on Software Engineering

Challenges of Cloud Computing. 2009

21. Menzel M, Sch€onherr M, Nimis J, and Tai S. (MC2)2: A Generic Decision-Making Frame-

work and its Application to Cloud Computing. Proc. International Conference on Cloud

Computing and Virtualization. 2010

22. Nurmi D,Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, and Zagorodnov D.

The Eucalyptus Open-source Cloud-computing System. October 2008

23. Nurmi D,Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, and Zagorodnov D.

Eucalyptus: A Technical Report on an Elastic Utility Computing Architecture Linking Your

Programs to Useful Systems. August 2008

24. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S,

and Turner J. OpenFlow: Enabling Innovation in College Networks. 2008

25. Sch€afer A. Die Kraft der sch€opferischen Zerst€orung. Campus. 2008

26. Sotomayor B, Montero RS, Llorente IM, and Foster I. Capacity Leasing in Cloud Systems

using the OpenNebula Engine. CCA08: Cloud Computing and its Applications. 2008

27. Sprang H, Benk T, Zdrzalek J, und Dehner R. Xen. Virtualisierung unter Linux. Open Source

Press. München. 2007

28. Streitberger W, Ruppel A. Cloud Computing Sicherheit - Schutzziele. Taxonomie.

Marktübersicht, FhG SIT Sept. 2009

29. Varia J. Cloud Architectures, White Paper, Amazon. 2009

30. Wang L. Virtual environments for Grid computing. Universit€atsverlag Karlsruhe. 2009

31. White T. Hadoop – The Definite Guide. O’Reilly Verlag. 2009

32. Wohlstadter E und Tai S. Web Services. Reference Entry. Encyclopedia of Database

Systems (EDBS). Springer. 2009

Online References

33. 10gen Scalable High Performance Data Storage forWebApplications http://www.10gen.com

34. Adobe Photoshop Express https://www.photoshop.com

35. EdgePlatform http://www.akamai.com/en/html/technology/edgeplatform.html

36. Amazon CloudFront http://aws.amazon.com/cloudfront/

37. Amazon CloudWatch http://aws.amazon.com/cloudwatch/

38. Amazon Cluster Compute Instances http://aws.amazon.com/ec2/hpc-applications/

39. Amazon Elastic Block Store (EBS) http://aws.amazon.com/ebs/

40. Amazon Elastic Compute Cloud (EC2) http://aws.amazon.com/ec2/

41. Amazon Elastic Map Reduce http://aws.amazon.com/elasticmapreduce/

42. Amazon EC2 Instance Types http://aws.amazon.com/ec2/instance-types/

43. Amazon Elastic Compute Cloud. Getting Started Guide http://docs.amazonwebservices.

com/AWSEC2/latest/GettingStartedGuide/

44. Amazon Mechanical Turk (MTurk) http://www.mturk.com

45. Amazon Relational Database Service http://aws.amazon.com/rds/

46. Amazon Simple Storage Service (S3) http://aws.amazon.com/s3/

90 Bibliography

47. Amazon SimpleDB http://aws.amazon.com/simpledb/

48. Amazon Simple Queue Service (SQS) http://aws.amazon.com/sqs/

49. Amazon Virtual Private Cloud (VPC) http://aws.amazon.com/vpc/

50. Amazon Web Services (AWS) http://aws.amazon.com

51. Amazon Web Services Developer Tools http://aws.amazon.com/developertools/

52. Amazon Web Services Import/Export http://aws.amazon.com/importexport/

53. Amazon Web Services Management Console http://console.aws.amazon.com

54. Amazon Web Services Toolkit for Eclipse http://aws.amazon.com/eclipse/

55. Animoto http://animoto.com

56. AppExchange http://sites.force.com/appexchange/home

57. AppNexus Cloud http://www.appnexus.com

58. Chandra Krintz: Appscale – An open-source research framework for execution of Google

AppEngine applications and investigation of scalable cloud computing fabrics http://www.

cs.ucsb.edu/ ckrintz/abstracts/appscale.html

59. Azure Services Platform http://www.microsoft.com/azure/

60. Bluelock http://www.bluelock.com

61. Project Caroline http://research.sun.com/projects/caroline

62. The Future of Corporate IT, Corporate Executive Board, 2010 http://www.executiveboard.

com/it/pdf/The_Future_of_Corporate_IT.pdf

63. Cloud Hosting and Cloud Storage Performance Dashboard http://www.cloudclimate.com

64. Cloudera http://www.cloudera.com

65. CloudStack http://www.cloud.com

66. Security Guidance for Critical Areas of Focus in Cloud Computing, Cloud Security Alliance,

2009 http://www.cloudsecurityalliance.org/guidance/csaguide.pdf

67. DeveloperForce http://developer.force.com

68. Django Web Framework http://www.djangoproject.com

69. Dropbox https://www.dropbox.com

70. Eclipse http://www.eclipse.org

71. eyeOS http://www.eyeos.org

72. ElasticFox: Firefox Extension for Amazon EC2 http://sourceforge.net/projects/elasticfox/

73. Virtual Private Datacenters http://www.enkiconsulting.net/virtual-private-data-centers/

74. Eucalyptus http://open.eucalyptus.com

75. Facebook Platform http://developers.facebook.com

76. FlexiScale Cloud Computing http://www.flexiscale.com

77. fluidOps eCloudManager http://www.fluidops.com/ecloudmanager.html

78. Force.com http://www.salesforce.com/de/platform/

79. Gaikai http://www.gaikai.com

80. Ganglia Monitoring System http://ganglia.info

81. gEclipse http://www.geclipse.org

82. GoGrid Cloud Hosting http://www.gogrid.com

83. Google App Engine http://appengine.google.com

84. Google App Engine SDK http://code.google.com/intl/de/appengine/downloads.html

85. Google Apps http://www.google.com/apps/

86. Google Chrome OS http://www.chromium.org/chromium-os

87. Google Cloud Print http://code.google.com/apis/cloudprint/

88. Google Docs http://docs.google.com

89. The Google File System http://labs.google.com/papers/gfs.html

90. Google Maps API http://code.google.com/apis/maps/

91. Google Eclipse Plugin http://code.google.com/intl/de/appengine/docs/java/tools/eclipse.html

92. Google Storage http://code.google.com/apis/storage/

93. Gridcore Gompute http://www.gridcore.se/ondemand-com/

94. GSUtil http://code.google.com/intl/en/apis/storage/docs/gsutil.html

95. Projekt Gutenberg http://www.gutenberg.org

Bibliography 91

96. Guardian: Investigate your MP’s expenses http://mps-expenses.guardian.co.uk

97. Hadoop Homepage http://hadoop.apache.org

98. Hive! http://hadoop.apache.org/hive/

99. Joyent Reasonably Smart http://www.joyent.com

100. JungleDisk http://www.jungledisk.com

101. KOALA http://koalacloud.appspot.com

102. KOALA Cloud Manager http://code.google.com/p/koalacloud/

103. Microsoft Windows Live http://explore.live.com/

104. Microsoft – The Economics of the Cloud http://www.microsoft.com/presspass/presskits/

cloud/docs/The-Economics-of-the-Cloud.pdf

105. NIST: Cloud Computing: Cloud Computing http://csrc.nist.gov/groups/SNS/cloud-computing/

106. NetSuite SuiteFlex http://www.netsuite.com

107. New York Times Archives + Amazon Web Services ¼ TimesMachine http://open.blogs.

nytimes.com/2008/05/21/the-new-york-timesarchives-amazon-web-services-timesmachine/

108. Nimbus http://www.nimbusproject.org

109. Nirvanix Storage Delivery Network http://www.nirvanix.com

110. OnLive – Cloud Gaming Service http://www.onlive.com

111. OpenCirrus http://opencirrus.org

112. OpenCirrus (Global) Monitoring https://opencirrus.org/content/global-monitoring/

113. OpenId http://www.openid.net

114. OpenNebula http://www.opennebula.org

115. OpenSocial API http://code.google.com/apis/opensocial/

116. OpenSSH http://www.openssh.com

117. OpenStack http://www.openstack.org/

118. Otoy http://www.otoy.com

119. Penguin Computing on Demand http://www.penguincomputing.com

120. Rackspace Managed Hosting http://www.rackspace.com

121. Michal Ludvig, s3cmd: S3-Client für die Kommandozeile http://s3tools.org/s3cmd/

122. S3Fox Organizer(S3Fox) http://www.s3fox.net

123. Sabalcore HPC on Demand http://www.sabalcore.com

124. Salesforce Community http://www.salesforce.com/community/

125. Salesforce CRM http://www.salesforce.com/de/crm/

126. Thomas Sandholm, Hadoop User Group Presentation http://tycoon.hpl.hp.com/ tycoon/grid/

HadoopUserGroupSept08.ppt

127. Skytab Virtual Lab http://www.skytap.com

128. SLA@SOI Empowering the Service Industrywith SLA-aware Infrastructures http://sla-at-soi.eu

129. Tashi Cloud Computing on Big Data http://www.pittsburgh.intel-research.net/projects/tashi/

130. PCI DSS https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf

131. Terremark Infinistructure http://www.terremark.com/services/managed-hosting.aspx

132. todo flexIT http://www.todo.de/Produkte/flexIT.php

133. TyphoonAE http://code.google.com/p/typhoonae/

134. UNIVA UD UniCloud http://www.univaud.com

135. VMware http://www.vmware.com

136. VMware vSphere http://www.vmware.com/products/vsphere/

137. Web Services Architecture Requirements. W3C Working Draft 29 April 2002 http://www.

w3.org/TR/2002/WD-wsa-reqs-20020429

138. World Privacy Forum: Privacy in the Clouds: Risks to Privacy and Confidentiality from

Cloud Computing http://http://www.worldprivacyforum.org

139. Ylastic http://www.ylastic.com

140. YouTube http://www.youtube.com

141. Zimory Public Cloud Marketplace http://www.zimory.de

142. Zoho Creator http://www.zoho.com

143. ZumoDrive – Hybrid Cloud Storage http://zumodrive.com

92 Bibliography

Index

A

Accountability, 46, 48

Accounting, 22, 23, 26, 27, 31, 33–35, 40,

49, 65, 70

Amazon Web Services (AWS), 8, 23–34, 41,

43–45, 53, 54, 59–61

Amazon Machine Image (AMI), 25, 45, 60

availability zone, 25

CloudFront, 19, 24, 41

CloudWatch, 31, 41

Cluster Compute Instances, 22

control, 41, 44

Dynamo, 19

EC2, 18, 19, 23–28, 41, 44, 45, 51,

53, 54, 59, 73–75, 79

EC2 Compute Unit (ECU), 53, 54

Elastic Block Store (EBS), 24, 26, 29, 44,

51, 52, 55, 75–76

Elastic MapReduce, 24, 41, 59, 60, 82–83

Import/Export, 24

job flow, 82

Machine Image, 80

Management Console, 27, 31, 41, 43

Mechanical Turk, 22

Relational Database Service (RDS), 24,

30–31, 41, 76–77

security group, 45

SimpleDB, 19, 24, 30

Simple Queue Service (SQS), 19, 24, 29–30

Simple Storage Service (S3), 18, 19, 24,

26–29, 34, 41, 42, 51, 52, 77, 82

spot instances, 28

VPC, 24, 41

Animoto, 63–64

AppNexus, 19

AppScale, 20, 34, 44, 56, 79

Auditing, 47

Authenticity, 46

Automation, 6, 34, 35, 40, 82

Availability, 6, 9, 10, 25, 29, 31, 36, 38,

39, 42, 46, 51, 70, 74, 75, 79, 80

AWS. See Amazon Web Services

Azure, 20, 36

B

Billing, 3, 4, 26, 28, 32, 39, 40, 47, 49, 64

Bioinformatics, 56

Bucket, 28, 34, 77, 82–83

Business models, 4, 66–68

C

Case-law, 48

Cloud computing, 1–2

adoption, 70

architecture, 15–22, 40, 66–67

basic technologies, 4

billing models, 64

business models, 66–68

cloud bursting, 62

Cloudera, 57, 60

CloudFront, 19, 24

cloud gaming, 38

Cloud Print, 35

Cloud Security Alliance, 47

cloud sourcing, 46, 47

CloudStack, 19, 40, 49–62

cost models, 65–66

Cumulus, 55

customer relationship management

(CRM), 20, 21, 37

93

Cloud computing (cont.)
data center, 2, 6, 9, 19, 22–24, 34,

36, 46, 47, 49–51, 65, 70

definition, 3

development, 20, 23, 27, 31, 33–37,

45–46, 51, 61, 62, 69, 70, 78

economic considerations, 4, 63–68

evaluation, 4, 64–66, 70

external cloud, 15

fields of application, 63–64

growth, 70

hybrid cloud, 15–16, 19, 24, 36

layers, 6, 8, 9, 11, 17, 18, 20–22,

40, 49, 61

legal compliance, 48

management, 2–4, 6, 7, 9, 10, 18, 21,

27, 31, 33–35, 37, 39–51, 55, 61,

62, 64, 66–67

management services, 41–46

market development, 69

marketplace, 22, 37, 46

monitoring, 31, 32, 39–41, 47, 49, 50,

61, 66–67, 81

more cloud services, 24–25, 64

offerings, 1, 2, 4, 9, 15, 16, 18–38,

40, 44, 48, 51, 64–66, 69, 70, 73

operating systems, 7, 8, 10, 18, 25,

34, 35, 38, 56, 78, 80, 81

opportunities, 69–71

private cloud, 2, 15, 16, 34, 42–44, 51,

53–56, 66, 69, 79, 80

programming, 9, 11, 14, 18, 20, 21,

29, 31, 33, 37, 41, 45, 57–59, 82

providers, 1–3, 6, 15, 20, 21, 34, 35,

37, 38, 41, 43, 47, 48, 51, 64,

66–68, 70

public cloud, 2, 10, 15, 16, 19,

42, 44, 51, 56, 63–66, 69

risk management, 47–48

risks, 44, 58, 64, 69–71

security, 2, 4, 7, 9, 14–16, 26, 39, 41,

43, 45–48, 51, 61, 65, 70, 73, 74

service consumer, 11–13, 39, 46

service provider, 5–7, 11–13, 39–41,

44, 46, 47, 55

services, 10–14, 16–35, 41–46, 59–60

stack, 17, 20, 21, 40, 49–62, 66

users, 1, 3, 10, 15–18, 20–35, 37–39,

41, 42, 44, 45, 52, 54, 55, 57,

59–61, 63–64, 70, 77, 78, 82

Commissioned data processing, 48

Confidentiality, 7, 46, 47

D

Data

analysis, 56, 57, 59

mining, 56, 82–83

privacy, 4, 24, 43, 46, 48, 70

Disruptive technology, 69

Django Framework, 18

Dropbox, 18, 19

E

EC2. See Elastic Compute Cloud

EC2 command line tools, 42, 73, 75, 79

EE. See Execution environment

Elastic Block Store (EBS) volume, 26, 29, 75

Elastic Compute Cloud (EC2), 18, 19, 23–32,

34, 41, 42, 44, 45, 51, 53–56, 59, 73–75,

79, 82–83

ElasticFox, 27, 42–44, 82

Elasticity, 3, 64–65

Emulab, 18, 19, 49

Encryption, 24, 47, 48, 70

Ensembles, 40, 62

Enterprise Service Bus (ESB), 12

Eucalyptus, 4, 18–20, 42–44, 51,

54, 55, 69

architecture, 51–54

Cloud Controller (CLC), 51, 52

Cluster Controller (CC), 51, 52

components, 51–54

Euca2ools, 42, 44, 79

file system image, 81

how to use, 79–82

infrastructure, 51, 52

installation, 79–82

instance number, 81

instances, 51, 53, 54, 80, 81

kernel image, 80, 81

key pair, 80

Node Controller (NC), 51, 52, 79

RAM disk image, 80, 81

resources, 51–53, 79–81

Storage Controller (SC), 52

Walrus, 52

Euca2ools, 42, 44, 79

Everything as a Service (XaaS), 17–18

Execution environment (EE), 18, 20, 33

Extensible Markup Language (XML), 12–14,

32, 61

External cloud, 2, 10, 15, 16, 19, 42, 44,

51, 56, 63–66, 69

eyeOS, 38

94 Index

F

Facebook, 20, 64

Fault tolerance, 40, 58

Financial analyses, 56

FlexiScale, 19

Fluid Operations, 21, 22

Force.com, 20, 37

G

Gaikai, 38

Ganglia, 61

GoGrid, 19

Google

App Engine, 20, 33–34, 44, 46,

47, 51, 56, 61, 77–78

Docs, 21, 33

Maps, 21

Storage, 34–35, 44

Google Web Toolkit (GWT), 34, 45

GrepTheWeb, 31, 32

Grid computing, 3

Gridcore Gompute, 22

GSUtil, 34, 44

GWT. See Google Web Toolkit

H

Hadoop, 4, 18, 32, 56–61, 69

Hadoop as a Service, 59–60

Hadoop Distributed File System (HDFS),

57–59

HDFS. See Hadoop Distributed File System

High Performance Computing as a Service

(HPCaaS), 22, 27, 54, 62

Hive, 59

HPCaaS. See High Performance

Computing as a Service

HTTP. See Hypertext Transfer Protocol
HuaaS. See Humans as a Service

Hub-and-spoke approach, 12

Humans as a Service (HuaaS), 17–18, 21–22

Hybrid cloud, 15–16, 19, 24, 36

Hybridfox, 43–44

Hyper call, 8

Hypertext Transfer Protocol (HTTP), 13, 14,

32, 34

Hyper-V, 56

Hypervisor, 8, 18, 51, 54–56

I

IaaS. See Infrastructure as a Service
Identity management, 21, 61

iLO. See Integrated Lights-Out

Infiniband, 62

Information technology (IT) service center, 2

Infrastructure as a Service (IaaS), 17–20, 22,

34, 46, 47, 49, 51, 54–56, 66–67

Integrated Lights-Out (iLO), 18, 19

Integrity, 46, 58

IOWA Electronic Markets, 22

ISO 27001, 47

J

Jails, 7

JungleDisk, 28

K

Kernel-based Virtual Machine (KVM), 8, 51,

54, 55

Knowledge worker, 2

KOALA, 44

KVM. See Kernel-based Virtual Machine

L

LaaS. See Landscape as a Service
Landscape as a Service (LaaS), 19, 22

Lifecycle, 9, 26, 40

Linux-VServer, 7

Logfile analyses, 56

M

Machine learning, 56, 70

Map function, 57

MapReduce, 18, 24, 41, 57–60, 82–83

Mash-up, 21

Message Passing Interface (MPI), 62

Monitoring, 8, 31, 32, 39–41, 47, 49, 50,

61–62, 66–67, 81

MPI. See Message Passing Interface

N

New York Times, 63

Nimbus, 18, 19, 44, 54–55

O

OLA. See Operation level agreement

On-demand solutions, 68

OnLive, 38

On-premise solutions, 68

OpenCirrusTM, 4, 61, 62

Index 95

OpenID, 21

OpenNebula, 18, 19, 22, 44, 54, 55

OpenSocial, 21

Open source cloud stack, 49–62

OpenStack, 55–56

Compute, 55–56

Object Storage, 55–56

OpenVZ, 7

Operating system kernel, 7, 8

Operation level agreement (OLA), 39

Otoy, 38

Overprovisioning, 64, 65

P

PaaS. See Platform as a Service

Pay as you go, 64

PE. See Programming environment

Penguin Computing on Demand, 22

Personal computer, 69

Physical resource set (PRS), 18, 49, 50, 61

Pig, 59

Pirated copies, 38

Platform as a Service (PaaS), 17–22, 30, 31,

33, 34, 37, 46, 47, 49, 51, 68, 79

Private cloud, 2, 15, 16, 34, 42–44, 51,

53–56, 65–66, 69, 79, 80

Programming environment (PE), 18, 20,

33, 37, 45, 59

PRS. See Physical resource set
Pseudonymity, 46

Public cloud, 2, 10, 15, 16, 19, 39, 42,

44, 51, 56, 63–66, 69

Q

Quality of service, 4, 9, 13, 34, 39–41, 69

R

Real estate costs, 65

Reduce function, 57, 83

Relational Database Service (RDS)

command line tools, 76

Resource set, 18

REST, 13, 14, 29, 34, 52, 55

S

SaaS. See Software as a Service
Sabalcore HPC on Demand, 22

Safe Harbor, 48

Salesforce.com, 21, 37

SAS, 47

Saturation, 64

Scalability, 9, 39, 40, 56, 57, 70

Scheduling, 40, 51, 52, 54, 62, 65

Scientific simulations, 56

s3cmd, 29, 42, 44, 77

Security techniques, 61

Service, 1, 5, 15, 23, 39, 49, 63, 69, 76

catalog, 40

level management, 39

lifecycle, 40

monitoring, 39–41, 50, 61

Service level agreement (SLA), 6, 39–40,

46, 47, 62

Service-oriented architectures (SOA), 5, 10–13

S3Fox, 42–44, 82–83

Simple Object Access Protocol (SOAP),

12–14, 29, 54

body, 14

envelope, 14

header, 14

message, 13, 14

Single sign-on, 61

SLA. See Service level agreement

Snapshots, 9, 17, 26, 31, 41, 75–77

SOA. See Service-oriented architectures

SOAP. See Simple Object Access Protocol

Social media, 2

Software as a Service (SaaS), 10, 17–18,

20–22, 37, 44, 46, 47, 49, 68

Software licenses, 62, 70

Software-Plus-Services, 68

Staff costs, 65

Standardization, 1, 3, 10, 14, 33, 35, 48, 61, 70

Storage service, 29, 34, 36, 42, 43, 50, 52,

54, 55, 61

System call, 8, 57

T

Tashi, 50–51, 61

TCO. See Total cost of ownership
TimesMachine, 63, 64

Topic, 3, 4, 47, 48, 71

Total cost of ownership (TCO), 65–67

Tycoon, 19

TyphoonAE, 34, 44, 56

U

UDDI. See Universal Description, Discovery
and Integration

Underprovisioning, 64

96 Index

Underutilization, 64, 65

Uniform resource identifier (URI), 12, 13

UNIVA DU UniCloud, 22

Universal Description, Discovery and

Integration (UDDI), 11–12

URI. See Uniform resource identifier

Utility computing, 1, 51

V

VDE. See Virtual Distributed Ethernet

Vendor lock-in, 2, 20, 47, 70

Virtual Distributed Ethernet (VDE), 52–53

Virtualization, 3–10, 18, 51, 54–56, 62

application virtualization, 10

benefits, 5–7

container, 7

drawbacks, 5–7

hyper call, 8

hypervisor, 8, 54, 55

network virtualization, 8–10

operating system virtualization, 7

paravirtualization, 8

platform virtualization, 8

storage virtualization, 8–9

Virtual machine, 5–8, 36, 49–54, 56,

70, 79–81

Virtual Private Cloud (VPC), 24, 41

Virtual resource set (VRS), 18, 50, 55, 61

Virtuozzo, 7

VMware, 8, 51, 54, 55, 69

ESX, 51

vSphere, 51, 54, 55, 69

Volume, 24, 26, 28, 29, 36, 56, 63, 66, 70, 71,

75, 76

VPC. See Virtual Private Cloud
VRS. See Virtual resource set

W

Walrus, 52

Web

indexing, 56

protocols, 10, 13

services, 4, 5, 8, 10, 12–14, 16, 23,

29, 30, 37, 41, 51

Web Service Description Language

(WSDL), 12–14

Windows Azure, 20, 36

Active Directory, 36

AppFabric, 36

compute, 36

drive, 36

queue, 36

roles, 36

SQL, 36

storage, 36

WSDL. See Web Service Description

Language

X

XaaS. See Everything as a Service

Xen, 8, 18, 51, 54–56

XML. See Extensible Markup Language

Y

Ylastic, 43, 44

YouTube, 22

Z

Zimory, 19, 22, 40, 46

Zumodrive, 18, 19

Index 97

	Cover
	Cloud Computing
	ISBN 9783642209161
	Preface
	Contents
	Chapter 1: Introduction
	1.1 What Is This Book About?
	1.2 Definition
	1.3 Outline of This Book

	Chapter 2: Cloud Basics
	2.1 Virtualization
	2.1.1 Benefits and Drawbacks of Virtualization
	2.1.2 Virtualization Concepts
	2.1.2.1 Operating System Virtualization
	2.1.2.2 Platform Virtualization
	2.1.2.3 Storage Virtualization
	2.1.2.4 Network Virtualization
	2.1.2.5 Application Virtualization

	2.2 Service-Oriented Architectures
	2.2.1 The Properties of SOA
	2.2.2 How Is an SOA Implemented?

	2.3 Web Services
	2.3.1 Interoperability
	2.3.2 SOAP Versus REST

	Chapter 3: Cloud Architecture
	3.1 Public, Private, and Hybrid Clouds
	3.2 The Technical Landscape of Cloud Services
	3.3 Infrastructure as a Service
	3.4 Platform as a Service
	3.5 Software as a Service
	3.6 Humans as a Service
	3.7 Other Categories of Cloud Services

	Chapter 4: Selected Cloud Offerings
	4.1 Amazon Web Services
	4.1.1 Amazon Elastic Compute Cloud (EC2)
	4.1.2 Amazon Simple Storage Service (S3)
	4.1.3 Amazon Elastic Block Store (EBS)
	4.1.4 Amazon Simple Queue Service (SQS)
	4.1.5 Amazon SimpleDB
	4.1.6 Amazon Relational Database Service
	4.1.7 The Amazon Web Services as `Team Players´

	4.2 Google Cloud Services
	4.2.1 Google App Engine
	4.2.2 Google Storage
	4.2.3 Google Cloud Print

	4.3 Windows Azure
	4.4 Salesforce.com
	4.5 Cloud Gaming
	4.6 Cloud Operating Systems

	Chapter 5: Cloud Management
	5.1 Service Level Agreements (SLAs)
	5.2 Lifecycle and Automation
	5.3 Management Services and Tools
	5.3.1 Monitoring
	5.3.2 Control
	5.3.3 Development

	5.4 Security Management
	5.5 Risk Management
	5.6 Legal Compliance

	Chapter 6: Open Source Cloud Stack
	6.1 Physical and Virtual Resources
	6.2 Eucalyptus
	6.2.1 Architecture and Components

	6.3 OpenNebula
	6.4 Nimbus
	6.5 CloudStack
	6.6 OpenStack
	6.7 AppScale
	6.8 TyphoonAE
	6.9 Apache Hadoop
	6.9.1 MapReduce
	6.9.2 Hadoop Distributed File System
	6.9.3 Pig
	6.9.4 Hive
	6.9.5 Hadoop as a Service

	6.10 The OpenCirrus Project

	Chapter 7: Economic Considerations
	7.1 Fields of Application
	7.2 Evaluation Models
	7.2.1 Cost Models
	7.2.2 TCO Framework

	7.3 Business Models

	Chapter 8: Opportunities and Risks
	8.1 Market Development
	8.2 Situational Evaluation
	8.3 Conclusion

	Chapter 9: Appendix
	9.1 Performing EC2 Tasks with the Amazon Tools
	9.2 Performing EBS Tasks with the Amazon Tools
	9.3 Performing RDS Tasks with the Amazon Tools
	9.4 Performing S3 Tasks with s3cmd
	9.5 Using Google App Engine
	9.6 Using AppScale
	9.7 Installing and Using Eucalyptus
	9.8 Data Mining with Amazon Elastic MapReduce

	Glossary
	Bibliography
	Online References

	Index

